Миф об особой роли сознания наблюдателя в квантовой механике. Эффект наблюдателя. Корпускулярно-волновой дуализм

Никто в мире не понимает квантовую механику - это главное, что нужно о ней знать. Да, многие физики научились пользоваться ее законами и даже предсказывать явления по квантовым расчетам. Но до сих пор непонятно, почему присутствие наблюдателя определяет судьбу системы и заставляет ее сделать выбор в пользу одного состояния. «Теории и практики» подобрали примеры экспериментов, на исход которых неминуемо влияет наблюдатель, и попытались разобраться, что квантовая механика собирается делать с таким вмешательством сознания в материальную реальность.

Кот Шредингера

Сегодня существует множество интерпретаций квантовой механики, самой популярной среди которых остается копенгагенская. Ее главные положения в 1920-х годах сформулировали Нильс Бор и Вернер Гейзенберг. А центральным термином копенгагенской интерпретации стала волновая функция - математическая функция, заключающая в себе информацию обо всех возможных состояниях квантовой системы, в которых она одновременно пребывает.

По копенгагенской интерпретации, доподлинно определить состояние системы, выделить его среди остальных может только наблюдение (волновая функция только помогает математически рассчитать вероятность обнаружить систему в том или ином состоянии). Можно сказать, что после наблюдения квантовая система становится классической: мгновенно перестает сосуществовать сразу во многих состояниях в пользу одного из них.

У такого подхода всегда были противники (вспомнить хотя бы «Бог не играет в кости» Альберта Эйнштейна), но точность расчетов и предсказаний брала свое. Впрочем, в последнее время сторонников копенгагенской интерпретации становится все меньше и не последняя причина тому - тот самый загадочный мгновенный коллапс волновой функции при измерении. Знаменитый мысленный эксперимент Эрвина Шредингера с бедолагой-котом как раз был призван показать абсурдность этого явления.

Итак, напоминаем содержание эксперимента. В черный ящик помещают живого кота, ампулу с ядом и некий механизм, который может в случайный момент пустить яд в действие. Например, один радиоактивный атом, при распаде которого разобьется ампула. Точное время распада атома неизвестно. Известен лишь период полураспада: время, за которое распад произойдет с вероятностью 50%.

Получается, что для внешнего наблюдателя кот внутри ящика существует сразу в двух состояниях: он либо жив, если все идет нормально, либо мертв, если распад произошел и ампула разбилась. Оба этих состояния описывает волновая функция кота, которая меняется с течением времени: чем дальше, тем больше вероятность, что радиоактивный распад уже случился. Но как только ящик открывается, волновая функция коллапсирует и мы сразу видим исход живодерского эксперимента.

Выходит, пока наблюдатель не откроет ящик, кот так и будет вечно балансировать на границе между жизнью и смертью, а определит его участь только действие наблюдателя. Вот абсурд, на который указывал Шредингер.

Дифракция электронов

По опросу крупнейших физиков, проведенному газетой The New York Times, опыт с дифракцией электронов, поставленный в 1961 году Клаусом Йенсоном, стал одним из красивейших в истории науки. В чем его суть?

Есть источник, излучающий поток электронов в сторону экрана-фотопластинки. И есть преграда на пути этих электронов - медная пластинка с двумя щелями. Какой картины на экране можно ожидать, если представлять электроны просто маленькими заряженными шариками? Двух засвеченных полос напротив щелей.

В действительности на экране появляется гораздо более сложный узор из чередующихся черных и белых полос. Дело в том, что при прохождении через щели электроны начинают вести себя не как частицы, а как волны (подобно тому, как и фотоны, частицы света, одновременно могут быть и волнами). Потом эти волны взаимодействуют в пространстве, где-то ослабляя, а где-то усиливая друг друга, и в результате на экране появляется сложная картина из чередующихся светлых и темных полос.

При этом результат эксперимента не меняется, и если пускать электроны через щель не сплошным потоком, а поодиночке, даже одна частица может быть одновременно и волной. Даже один электрон может одновременно пройти через две щели (и это еще одно из важных положений копенгагенской интерпретации квантовой механики - объекты могут одновременно проявлять и свои «привычные» материальные свойства, и экзотические волновые).

Но при чем здесь наблюдатель? При том, что с ним и без того запутанная история стала еще сложнее. Когда в подобных экспериментах физики попытались зафиксировать с помощью приборов, через какую щель в действительности проходит электрон, картинка на экране резко поменялась и стала «классической»: два засвеченных участка напротив щелей и никаких чередующихся полос.

Электроны будто не захотели проявлять свою волновую природу под пристальным взором наблюдателя. Подстроились под его инстинктивное желание увидеть простую и понятную картинку. Мистика? Есть и куда более простое объяснение: никакое наблюдение за системой нельзя провести без физического воздействия на нее. Но к этому вернемся еще чуть позже.

Нагретый фуллерен

Опыты по дифракции частиц ставили не только на электронах, но и на куда больших объектах. Например, фуллеренах - крупных, замкнутых молекулах, составленных из десятков атомов углерода (так, фуллерен из шестидесяти атомов углерода по форме очень похож на футбольный мяч: полую сферу, сшитую из пяти- и шестиугольников).

Недавно группа из Венского университета во главе с профессором Цайлингером попыталась внести элемент наблюдения в подобные опыты. Для этого они облучали движущиеся молекулы фуллерена лазерным лучом. После, нагретые внешним воздействием, молекулы начинали светиться и тем неминуемо обнаруживали для наблюдателя свое место в пространстве.

Вместе с таким нововведением поменялось и поведение молекул. До начала тотальной слежки фуллерены вполне успешно огибали препятствия (проявляли волновые свойства) подобно электронам из прошлого примера, проходящим сквозь непрозрачный экран. Но позже, с появлением наблюдателя, фуллерены успокоились и стали вести себя как вполне законопослушные частицы материи.

Охлаждающее измерение

Одним из самых известных законов квантового мира является принцип неопределенности Гейзенберга: невозможно одновременно установить положение и скорость квантового объекта. Чем точнее измеряем импульс частицы, тем менее точно можно измерить ее положение. Но действие квантовых законов, работающих на уровне крошечных частиц, обычно незаметно в нашем мире больших макрообъектов.

Потому тем ценнее недавние эксперименты группы профессора Шваба из США, в которых квантовые эффекты продемонстрировали не на уровне тех же электронов или молекул фуллерена (их характерный диаметр - около 1 нм), а на чуть более ощутимом объекте - крошечной алюминиевой полоске.

Эту полоску закрепили с обеих сторон так, чтобы ее середина была в подвешенном состоянии и могла вибрировать под внешним воздействием. Кроме того, рядом с полоской находился прибор, способный с высокой точностью регистрировать ее положение.

В результате экспериментаторы обнаружили два интересных эффекта. Во-первых, любое измерение положения объекта, наблюдение за полоской не проходило для нее бесследно - после каждого измерения положение полоски менялось. Грубо говоря, экспериментаторы с большой точностью определяли координаты полоски и тем самым, по принципу Гейзенберга, меняли ее скорость, а значит и последующее положение.

Во-вторых, что уже совсем неожиданно, некоторые измерения еще и приводили к охлаждению полоски. Получается, наблюдатель может лишь одним своим присутствием менять физические характеристики объектов. Звучит совсем невероятно, но к чести физиков скажем, что они не растерялись - теперь группа профессора Шваба думает, как применить обнаруженный эффект для охлаждения электронных микросхем.

Замирающие частицы

Как известно, нестабильные радиоактивные частицы распадаются в мире не только ради экспериментов над котами, но и вполне сами по себе. При этом каждая частица характеризуется средним временем жизни, которое, оказывается, может увеличиваться под пристальным взором наблюдателя.

Впервые этот квантовый эффект предсказали еще в 1960-х годах, а его блестящее экспериментальное подтверждение появилось в статье , опубликованной в 2006 году группой нобелевского лауреата по физике Вольфганга Кеттерле из Массачусетского технологического института.

В этой работе изучали распад нестабильных возбужденных атомов рубидия (распадаются на атомы рубидия в основном состоянии и фотоны). Сразу после приготовления системы, возбуждения атомов за ними начинали наблюдать - просвечивать их лазерным пучком. При этом наблюдение велось в двух режимах: непрерывном (в систему постоянно подаются небольшие световые импульсы) и импульсном (система время от времени облучается импульсами более мощными).

Полученные результаты отлично совпали с теоретическими предсказаниями. Внешние световые воздействия действительно замедляют распад частиц, как бы возвращают их в исходное, далекое от распада состояние. При этом величина эффекта для двух исследованных режимов также совпадает с предсказаниями. А максимально жизнь нестабильных возбужденных атомов рубидия удалось продлить в 30 раз.

Квантовая механика и сознание

Электроны и фуллерены перестают проявлять свои волновые свойства, алюминиевые пластинки охлаждаются, а нестабильные частицы замирают в своем распаде: под всесильным взором наблюдателя мир меняется. Чем не свидетельство вовлеченности нашего разума в работу мира вокруг? Так может быть правы были Карл Юнг и Вольфганг Паули (австрийcкий физик, лауреат Нобелевской премии, один из пионеров квантовой механики), когда говорили, что законы физики и сознания должны рассматриваться как взаимодополняющие?

Но так остается только один шаг до дежурного признания: весь мир вокруг суть нашего разума. Жутковато? («Вы и вправду думаете, что Луна существует лишь когда вы на нее смотрите?» - комментировал Эйнштейн принципы квантовой механики). Тогда попробуем вновь обратиться к физикам. Тем более, в последние годы они все меньше жалуют копенгагенскую интерпретацию квантовой механики с ее загадочным коллапсом волной функции, на смену которому приходит другой, вполне приземленный и надежный термин - декогеренция.

Дело вот в чем - во всех описанных опытах с наблюдением экспериментаторы неминуемо воздействовали на систему. Подсвечивали ее лазером, устанавливали измеряющие приборы. И это общий, очень важный принцип: нельзя пронаблюдать за системой, измерить ее свойства не провзаимодействовав с ней. А где взаимодействие, там и изменение свойств. Тем более, когда с крошечной квантовой системой взаимодействуют махины квантовых объектов. Так что вечный, буддистский нейтралитет наблюдателя невозможен.

Как раз это объясняет термин «декогеренция» - необратимый с точки зрения процесс нарушения квантовых свойств системы при ее взаимодействии с другой, крупной системой. Во время такого взаимодействия квантовая система утрачивает свои изначальные черты и становится классической, «подчиняется» системе крупной. Этим и объясняется парадокс с котом Шредингера: кот представляет собой настолько большую систему, что его просто нельзя изолировать от мира. Сама постановка мысленного эксперимента не совсем корректна.

В любом случае, по сравнению с реальностью как актом творения сознания, декогеренция звучит куда более спокойно. Даже, может быть, слишком спокойно. Ведь с таким подходом весь классический мир становится одним большим эффектом декогеренции. А как утверждают авторы одной из самых серьезных книг в этой области, из таких подходов еще и логично вытекают утверждения вроде «в мире не существует никаких частиц» или «не существует никакого времени на фундаментальном уровне».

Созидающий наблюдатель или всесильная декогеренция? Приходится выбирать из двух зол. Но помните - сейчас ученые все больше убеждаются, что в основе наших мыслительных процессов лежат те самые пресловутые квантовые эффекты. Так что где заканчивается наблюдение и начинается реальность - выбирать приходится каждому из нас.

Только сегодня подумала, что эффект наблюдателя теоретически доказывает возможность реализовать на физическом плане не только свои планы и проекты, но также тело света и вообще возможность перехода из энергетического состояния в материальное и обратно. Получается, что в своём развитии можно дойти до уровня сознания, позволяющего по своему желанию существовать либо в виде материи, либо в виде волны. К примеру, п реображение Иисуса и его явление ученикам после распятия в материальном теле вполне укладываются в эту теорию.
Ниже лёгкое напоминание, что есть "эффект наблюдателя", и отрывок из книги, переносящий принцип приоритета сознания с квантовой физики на проявленный план.

«Твоя жизнь там, где твоё внимание».

Именно этот постулат был экспериментально доказан физиками во многих лабораториях мира, как бы странно это не звучало. Возможно, сейчас это звучит необычно, но квантовая физика начала доказывать правоту седой древности: «Твоя жизнь там, где твоё внимание». В частности, что человек своим вниманием влияет на окружающий материальный мир, предопределяет реальность, которую и воспринимает.

С самого своего зарождения квантовая физика начала кардинально менять представление о микромире и о человеке, начиная со второй половины XIX века, с утверждения Уильяма Гамильтона о волнообразной природе света, и продолжая передовыми открытиями современных ученых. Квантовая физика уже сейчас имеет множество доказательств того, что микромир «живет» по совершенно иным законам физики, что свойства нано частиц отличаются от привычного человеку мира, что элементарные частицы по-особенному взаимодействуют с ним.
В середине 20-го века Клаус Йенсон в ходе экспериментов получил интересный результат: во время физических опытов субатомные частицы и фотоны точно реагировали на внимание человека, что приводило к разному конечному результату. То есть, нано частицы реагировали на то, на что исследователи фокусировали в тот момент своё внимание. Каждый раз данный эксперимент, который уже успел стать классическим, удивляет учёных. Его повторяли много раз во многих лабораториях мира, и каждый раз результаты этого эксперимента идентичны, что подтверждает его научную ценность и достоверность.
Так, для этого опыта готовят источник света и экран (непроницаемая для фотонов пластинка), у которого есть две щели. Устройство, в качестве которого и выступает источник света, однократными импульсами «выстреливает» фотонами.

Фото 1.
Перед специальной фотобумагой разместили особый экран с двумя щелями. Как и предполагалось, на фотобумаге проявились две вертикальные полоски - следы фотонов, которые засветили бумагу, проходя сквозь эти щели. Естественно, за ходом эксперимента велось наблюдение.

Фото 2.
Когда же исследователь включил прибор, а сам на время отлучился, вернувшись в лабораторию, был несказанно удивлён: на фотобумаге фотоны оставили совершенно другое изображение - вместо двух вертикальных полосок - множество.

Фото 3.
Как такое могло произойти? Оставленные на бумаге следы были характерны волне, которая проходила сквозь щели. Иными словами, наблюдалась интерференционная картина.

Фото 4.
Простой эксперимент с фотонами показал, что при факте наблюдения (в присутствии прибора-детектора, или наблюдателя) волна переходит в состояние частицы и ведёт себя как частица, но, при отсутствии наблюдателя, ведёт себя как волна. Выяснилось, что если не вести наблюдения в данном эксперименте, фотобумага проявляет следы волн, то есть, видна интерференционная картина. Такой физический феномен стали называть «Эффект Наблюдателя».

Эксперимент с частицами, который описан выше, так же применим к вопросу «А есть ли Бог?». Потому как, если при зорком внимании Наблюдателя то, что имеет волновую природу может пребывать в состоянии материи, реагируя и меняя свои свойства, то кто внимательно наблюдает за всей Вселенной? Кто удерживает в стабильном состоянии всю материю своим вниманием?Как только у личности в её восприятии появляется допущение того, что она может жить в качественно другом мире (например, в мире Бога), только тогда она, личность, и начинает изменять свой вектор развития в эту сторону, и шансы пережить данный опыт многократно увеличиваются. То есть, достаточно просто допустить возможность такой реальности для себя. Следовательно, как только человек принимает возможность приобретения такого опыта, он действительно начинает его приобретать. Этому есть подтверждение и в книге «АллатРа» Анастасии Новых:

«Всё зависит от самого Наблюдателя: если личность воспринимает себя частичкой (материальным объектом, живущим по законам материального мира), она будет видеть и воспринимать мир материи; если же личность воспринимает себя волной (чувственные переживания, расширенное состояние сознания), то она воспринимает мир Бога и начинает его понимать, жить им.»
В вышеописанном опыте наблюдатель неминуемо влияет на ход и результаты эксперимента. То есть, вырисовывается очень важный принцип: невозможно наблюдать за системой, измерить и проанализировать её, не взаимодействуя с ней. Где есть взаимодействие, там есть изменение свойств.
Мудрецы говорят, что Бог - везде. Не подтверждают ли наблюдения за нано частицами это утверждение? Не являются ли данные эксперименты подтверждением того, что вся материальная Вселенная так же взаимодействует с Ним, как, к примеру, Наблюдатель взаимодействует с фотонами? Не показывает ли этот опыт, что всё, куда направлено внимание Наблюдателя, пронизано самим ним? Ведь, с точки зрения квантовой физики и принципа «Эффекта Наблюдателя», это неизбежно, так как во время взаимодействия квантовая система теряет свои изначальные черты, изменяясь под влиянием более крупной системы. То есть, обе системы взаимно обмениваясь в энерго-информационном плане, видоизменяют друг-друга.

Если развить этот вопрос дальше, то получается Наблюдатель предопределяет реальность, в которой потом и живёт. Это проявляется как следствие его выбора. В квантовой физике есть понятие множественности реальностей, когда перед Наблюдателем находятся тысячи возможных реальностей, пока он не сделает свой окончательный выбор, тем самым выбирая лишь одну из реальностей. И когда он сам для себя выбирает свою собственную реальность, он сосредотачивается на ней, и она проявляется для него (или он для неё?).
И опять же, принимая во внимание тот факт, что человек живёт в той реальности, которую сам же и поддерживает своим вниманием, то приходим к тому же вопросу: если вся материя во Вселенной держится на внимании, то Кто держит саму Вселенную своим вниманием? Не доказывает ли этот постулат существование Бога, Того, Кто может созерцать всю картину целиком?

Разве это не свидетельствует о том, что наш разум напрямую вовлечён в работу материального мира? Вольфган Паули, один из основателей квантовой механики, как-то сказал: «Законы физики и сознания должны рассматриваться как взаимодополняющие ». Можно с уверенностью сказать, что господин Паули был прав. Это уже очень близко к всемирному признанию: материальный мир - суть иллюзорное отображение нашего разума, и то, что мы видим зрением, на самом деле реальностью не является. Тогда что такое реальность? Где она находится, и как ее узнать?
Всё больше и больше учёные склоняются к мнению, что и мышление человека точно так же подчиняется процессам пресловутых квантовых эффектов. Жить в иллюзии, нарисованной разумом, или открыть для себя реальность — это каждый для себя выбирает сам. Мы лишь можем вам порекомендовать ознакомиться с книгой АллатРа, которую цитировали выше. Эта книга не только научно доказывает существование Бога, но и подробно дает пояснения всех существующих реальностей, измерений, и даже раскрывает структуру энергетической конструкции человека. Скачать эту книгу вы можете совершенно бесплатно с нашего сайта, кликнув по цитате ниже, или перейдя в соответствующий раздел сайта.

November 21st, 2016

Прочитал сейчас такое утверждение, что никто в этом мире не понимает, что такое квантовая механика. Это, пожалуй, самое главное, что нужно знать о ней. Конечно, многие физики научились использовать законы и даже предсказывать явления, основанные на квантовых вычислениях. Но до сих пор неясно, почему наблюдатель эксперимента определяет поведение системы и заставляет ее принять одно из двух состояний.

Перед вами несколько примеров экспериментов с результатами, которые неизбежно будут меняться под влиянием наблюдателя. Они показывают, что квантовая механика практически имеет дело с вмешательством сознательной мысли в материальную реальность.

Сегодня существует множество интерпретаций квантовой механики, но Копенгагенская интерпретация, пожалуй, является самой известной. В 1920-х ее общие постулаты были сформулированы Нильсом Бором и Вернером Гейзенбергом.

В основу Копенгагенской интерпретации легла волновая функция. Это математическая функция, содержащая информацию о всех возможных состояниях квантовой системы, в которых она существует одновременно. Как утверждает Копенгагенская интерпретация, состояние системы и ее положение относительно других состояний может быть определено только путем наблюдения (волновая функция используется только для того, чтобы математически рассчитать вероятность нахождения системы в одном или другом состоянии).

Можно сказать, что после наблюдения квантовая система становится классической и немедленно прекращает свое существование в других состояниях, кроме того, в котором была замечена. Такой вывод нашел своих противников (вспомните знаменитое эйнштейновское «Бог не играет в кости»), но точность расчетов и предсказаний все же возымели свое.

Тем не менее число сторонников Копенгагенской интерпретации снижается, и главной причиной этого является таинственный мгновенный коллапс волновой функции в ходе эксперимента. Знаменитый мысленный эксперимент Эрвина Шредингера с бедным котиком должен продемонстрировать абсурдность этого явления. Давайте вспомним . Т.е вывод заключается в том, что пока наблюдатель не откроет коробку, кот будет бесконечно балансировать между жизнью и смертью, или будет одновременно жив и мертв. Его судьба может быть определена только в результате действий наблюдателя. На этот абсурд и указал Шредингер.

Но оказывается есть еще и другой эксперимент.

Дифракция электронов

Согласно опросу знаменитых физиков, проведенному The New York Times, эксперимент с дифракцией электронов является одним из самых удивительных исследований в истории науки. Какова его природа? Существует источник, который излучает пучок электронов на светочувствительный экран. И есть препятствие на пути этих электронов, медная пластина с двумя щелями.

Какую картинку можно ожидать на экране, если электроны обычно представляются нам небольшими заряженными шариками? Две полосы напротив прорезей в медной пластине.

Но на самом деле на экране появляется куда более сложный узор из чередующихся белых и черных полос. Это связано с тем, что при прохождении через щель электроны начинают вести себя не только как частицы, но и как волны (так же ведут себя фотоны или другие легкие частицы, которые могут быть волной в то же время).

Эти волны взаимодействуют в пространстве, сталкиваясь и усиливая друг друга, и в результате сложный рисунок из чередующихся светлых и темных полос отображается на экране. В то же время результат этого эксперимента не изменяется, даже если электроны проходят один за одним — даже одна частица может быть волной и проходить одновременно через две щели. Этот постулат был одним из основных в Копенгагенской интерпретации квантовой механики, когда частицы могут одновременно демонстрировать свои «обычные» физические свойства и экзотические свойства как волна.

Но как насчет наблюдателя? Именно он делает эту запутанную историю еще более запутанной. Когда физики во время подобных экспериментов попытались определить с помощью инструментов, через какую щель фактически проходит электрон, картинка на экране резко изменилась и стала «классической»: с двумя освещенными секциями строго напротив щелей, безо всяких чередующихся полос. Т.е еще раз: как только они подносят к пластине измерительный прибор, волна локально превращается в поток отдельных частиц. Когда прибор убирают, поток отдельных частиц вновь сливается в излучение и на экране опять можно наблюдать интерференционную картину.

Электроны, казалось, не хотят открывать свою волновую природу бдительному оку наблюдателей. Похоже на тайну, покрытую мраком. Но есть и более просто объяснение: наблюдение за системой не может осуществляться без физического влияния на нее. А можно сказать и так, что на самом деле "эффект наблюдателя" - это вопрос когнитивного восприятия результатов опыта. Это еще называют "Квантовый эффект Сознания".


Тот же эффект наблюдается при экстремальном охлаждении некоторых атомов вещества (происходит нивелирование теплового - электромагнитного взаимодействия между ним) при образовании конденсата Бозе-Эйнштейна - группа атомов сливается воедино и теряется возможность говорить о каждом из них по отдельности. В первом случае система не конкретизирована и проявляет волновые свойства, во втором случае приобретает эффект корпускулярного проявления в соответствии с информацией, которая нас начинает конкретно интересовать.

По представлениям современной физики все материализуется из пустоты. Эта пустота получила названия «квантовое поле», «нулевое поле» или «матрица». Пустота содержит энергию, которая может превращаться в материю.

Материя состоит из сконцентрированной энергии — это фундаментальное открытие физики 20 века.

В атоме нет твердых частей. Предметы состоят из атомов. Но почему предметы твердые? Палец приложенный к кирпичной стене не проходит сквозь нее. Почему? Это связано с различиями частотных характеристик атомов и электрическими зарядами. У каждого типа атомов своя частота вибраций. Этим определяются различия физических свойств предметов. Если бы было можно менять частоту вибраций атомов, из которых состоит тело, то человек смог бы пройти сквозь стены. Но вибрационные частоты атомов руки и атомов стены близки. Поэтому палец упирается в стену.

Для любых видов взаимодействий необходим частотный резонанс.

Это легко понять на простом примере. Если осветить каменную стену светом карманного фонаря, то свет будет задержан стеной. Однако излучение мобильного телефона легко пройдет сквозь эту стену. Все дело в различиях частот между излучением фонаря и мобильного телефона. Пока вы читаете этот текст, сквозь ваше тело проходят потоки самого различного излучения. Это космическое излучение, радиосигналы, сигналы миллионов мобильных телефонов, излучение, идущее из земли, солнечная радиация, излучение, которое создают бытовые приборы и т.п.

Вы это не ощущаете, поскольку можете видеть только свет, а слышать только звук. Даже если вы сидите в тишине с закрытыми глазами, сквозь вашу голову проходят миллионы телефонных разговоров, картины телевизионных новостей и сообщений по радио. Вы это не воспринимаете, поскольку нет резонанса частот между атомами из которых состоит ваше тело и излучением. Но если резонанс есть, — то вы немедленно реагируете. Например, когда вы вспоминаете о близком человеке, который только что подумал о вас. Все во вселенной подчиняется законам резонанса.

Мир состоит из энергии и информации. Эйнштейн, после долгих размышлений об устройства мира сказал: »Единственная существующая во вселенной реальность — это поле». Подобно тому, как волны являются творением моря, все проявления материи: организмы, планеты, звезды, галактики — это творения поля.

Возникает вопрос, как из поля создается материя? Какая сила управляет движением материи?

Исследования ученых привели их к неожиданному ответу. Создатель квантовой физики Макс Планк во время своей речи при получении Нобелевской премии произнес следующее:

«Все во Вселенной создается и существует благодаря силе. Мы должны предполагать, что за этой силой стоит сознательный разум, который является матрицей всякой материи«.

МАТЕРИЯ УПРАВЛЯЕТСЯ СОЗНАНИЕМ

На рубеже 20 и 21 века в теоретической физике появились новые идеи, которые позволяют объяснить странные свойства элементарных частиц. Частицы могут возникать из пустоты и внезапно исчезать. Ученые допускают возможность существования параллельных вселенных. Возможно частицы переходят из одного слоя вселенной в другой. В развитии этих идей участвуют такие знаменитости, как Stephen Hawking, Edward Witten, Juan Maldacena, Leonard Susskind.

Согласно представлениям теоретической физики — Вселенная напоминает матрешку, которая состоит из множества матрешек — слоев. Это варианты вселенных — параллельные миры. Те, что расположены рядом — очень похожи. Но чем дальше слои друг от друга слои - тем меньше между ними сходства. Теоретически, для того, что бы переходить из одной вселенной в другую, не требуются космические корабли. Все возможные варианты расположены один в другом. Впервые эти идеи были высказаны учеными в середине 20 века. На рубеже 20 и 21 века они получили математическое подтверждение. Сегодня подобная информация легко принимаются публикой. Однако пару сотен лет назад, за такие высказывания могли сжечь на костре или объявить сумасшедшим.

Все возникает из пустоты. Все находится в движении. Предметы — иллюзия. Материя состоит из энергии. Все создается мыслью.

Эти открытия квантовой физики не содержат ничего нового. Все это было известно древним мудрецам. Во многих мистических учениях, которые считались секретными и были доступны только посвященным, говорилось, что нет никакого различия между мыслями и предметами.

Все в мире наполнено энергией.
Вселенная реагирует на мысль.
Энергия следует за вниманием.
То, на чем ты фокусируешь свое внимание, начинает изменяться.

Эти мысли в различных формулировках даются в Библии, древних гностических текстах, в мистических учениях, которые возникли в Индии и Южной Америке. Об этом догадывались строители древних пирамид. Эти знания являются ключом к новым технологиям, которые сегодня используются для управления реальностью.

Наше тело - это поле энергии, информации и разума, находящееся в состоянии постоянного динамического обмена с окружающей средой.

А вы какое объяснение больше предпочитаете?

Наука кроме всего прочего интересна своей непредсказуемостью. Среди физиков, и не только, известна история о том, как в середине XIX века профессор Филипп фон Жолли отговаривал молодого Макса Планка заниматься теоретической физикой, утверждая, что эта наука близка к завершению и что в ней остались лишь незначительные проблемы. Планк, к счастью, его не послушал и стал основоположником квантовой механики, одной из самых успешных теорий в истории физики. Большинство технических достижений физики ХХ века справедливо связывают с квантовой механикой. Атомная энергетика и лазеры, теории элементарных частиц и физика твердого тела, успехи наноэлектроники и теория сверхпроводимости немыслимы без квантовой механики. Эти вызывающие восхищение успехи привели к почти всеобщей вере в справедливость основных принципов квантовой механики. Сомнения, казалось бы, здесь неуместны. Но семинар «Квантовая теория без наблюдателя» в университете немецкого города Билефельд 22–26 апреля 2013 года свидетельствует о том, что всё не так однозначно. Семинар проводится в рамках программы научных исследований Европейского сообщества «Фундаментальные проблемы квантовой физики» . Программа включает четыре основные темы: 1) квантовая теория без наблюдателя, 2) эффективное описание сложных систем, 3) квантовая теория и теория относительности, 4) от теории к эксперименту.

В обосновании необходимости данной программы говорится, что сейчас многие ученые согласны с известным высказыванием Эйнштейна 1926 года: «Квантовая механика, несомненно, впечатляет. Но внутренней голос говорит мне, что это не есть, однако, реальная вещь. Теория говорит многое, но она не приближает нас к секретам Создателя. Я, во всяком случае, уверен, что Он не играет в кости ». Судя по составу участников программы, ученых, согласных с Эйнштейном, действительно немало. В программе MP1006 принимают участие ученые из 22 европейских стран и Израиля, а также из отдельных университетов США, Австралии, Индии, Мексики и Южной Африки.

В качестве мотивации необходимости создания квантовой теории без наблюдателя приводится одно из высказываний ирландского физика Джона Белла (1928–1990): «Формулировки квантовой механики, которые вы находите в книгах, предполагают разделение мира на наблюдателя и наблюдаемое, и вам не говорят, где проходит это разделение - с какой стороны очков, например, или с какой стороны моего оптического нерва... Таким образом, мы имеем теорию, которая является фундаментально неясной ». Эта проблема не является новой. Она возникла сразу после того, как совсем молодой Гейзенберг предложил в 1925 году описывать не то, что происходит, а то, что наблюдается. По воспоминаниям самого Гейзенберга, в беседе, после его выступления в 1926 году в Берлинском университете, Эйнштейн сказал, что «с принципиальной точки зрения желание строить теорию только на наблюдаемых величинах совершенно нелепо. Потому что в действительности всё ведь обстоит как раз наоборот. Только теория решает, что именно можно наблюдать. Видите ли, наблюдение, вообще говоря, есть очень сложная система ». Через 63 года, в 1989 году, Белл писал в статье «Против измерения»: «Эйнштейн говорил, что теория определяет, что может быть "наблюдаемым". Я думаю, он был прав: "наблюдение" - это крайне сложный процесс для теоретического описания. Поэтому такого понятия не должно быть в формулировке фундаментальной теории ». Таким образом, согласно мнению не только Белла, но и достаточно большого числа ученых, с ним согласных, в наиболее успешной теории ХХ века есть такие понятия, которых не должно быть в формулировке фундаментальной теории. Стоит ли обращать на это внимание? Ответ на данный вопрос, очевидно, связан с ответом на вопрос о целях научного исследования.

Ортодоксальная квантовая механика отказалась от того, что Эйнштейн считал «высшей целью всей физики: полное описание реального состояния произвольной системы (существующей независимо от акта наблюдения или существования наблюдателя)... ». Этот отказ явился следствием того, что Гейзенберг, Бор и др. потеряли надежду на возможность реалистического описания некоторых явлений, таких, например, как эффект Штерна-Герлаха. Штерн и Герлах обнаружили в 1922 году, что измеряемые значения проекций магнитного момента атомов имеют дискретные значения. Бор писал в 1949 году, что, «как ясно показали Эйнштейн и Эренфест [в 1922 году], наличие такого эффекта ставило непреодолимые трудности перед всякой попыткой наглядно представить себе поведение атома в магнитном поле ». А спустя 32 года Белл писал: «Из-за явлений подобного рода среди физиков возник скепсис относительно возможности создания непротиворечивого пространственно-временного описания процессов, происходящих на атомном и субатомном уровнях... Более того, некоторые стали утверждать, что атомы и субатомные частицы не имеют определенных параметров, кроме тех, что наблюдаются. Не существует, например, определенного значения параметра, по которому можно было бы различить частицы, приближающиеся к анализатору Штерна-Герлаха, до отклонения их траектории вверх или вниз. В действительности реально не существуют даже частицы ».

Вопрос о существовании параметров до наблюдения был главным предметом спора между основоположниками квантовой теории Гейзенбергом, Бором и др., с одной стороны, и Эйнштейном, Шрёдингером и др. - с другой стороны. Шрёдингер писал в 1951 году, что «Бор, Гейзенберг и их последователи... имеют в виду, что объект не существует независимо от наблюдающего субъекта ». Он выражал свое несогласие с тем, «что глубокое философское размышление об отношении объекта и субъекта и об истинном значении отличий между ними зависит от количественных результатов физических или химических измерений ». Эйнштейн свое несогласие выразил, в частности, известным высказыванием «Мне хотелось бы думать, что Луна существует, даже когда я на нее не смотрю ». Наиболее известным эпизодом в этом споре гигантов явилась статья 1935 года - Эйнштейна, Подольского и Розена.

ЭПР стремились доказать, как писал в 1981 году Белл, «что теоретики, создавшие квантовую механику, опрометчиво поспешили отказаться от реальности микроскопического мира ». Но сейчас статья ЭПР известна большинству не этим доказательством, а ЭПР-корреляцией, которую сами ЭПР считали невозможной, а многие современные авторы считают реально существующей. Это является, пожалуй, главным парадоксом в истории с ЭПР-корреляцией. ЭПР-корреляция и неравенства Белла с наибольшей достоверностью доказали, что предположение о существовании параметров до измерения противоречит ортодоксальной квантовой механике. Из нелокальности ЭПР-корреляции следует, что описание акта измерения не может быть полным без включения в него сознания наблюдателя. Нелокальность является следствием того, что имеет разные названия: скачок Дирака, коллапс или редукция волновой функции, «квантовый скачок от возможности к действительности» (по Гейзенбергу), но один смысл - мгновенное, нелокальное, необратимое превращение суперпозиции в собственное состояние при измерении. Эта особая роль акта измерения определяется тем, что, как писал Дирак в 1930 году, «измерение всегда вызывает скачок системы в собственное состояние той динамической переменной, измерение которой производилось ». Этот скачок не может быть следствием воздействия прибора на квантовую систему, так как неравенства Белла выводятся именно из этого предположения. Воздействие может быть любым, которое необходимо для описания результатов измерений. Единственным условием при выводе неравенств Белла является локальность воздействия: изменение условий эксперимента не может мгновенно повлиять на результат измерений в пространственно удаленной области. Нелокальное воздействие прибора есть реальная нелокальность, означающая возможность изменить прошлое, что логически невозможно. Поэтому нарушение неравенств Белла, предсказываемое квантовой механикой, может быть только следствием нелокальности нашего сознания.

Для Гейзенберга и других создателей квантовой механики не могло быть вопроса, с какой стороны очков проходит разделение между наблюдателем и наблюдаемым. Для них, мысливших в традициях европейской философии, это разделение могло быть только следствием картезианского разделения на сущности мыслящие и сущности протяженные. Утверждение Гейзенберга «Классическая физика основывалась на предположении - или, можно сказать, на иллюзии, - что можно описать мир или, по меньшей мере, часть мира, не говоря о нас самих » подчеркивает, что квантовая механика отказалась от полярности этого разделения, когда сущности протяженные мыслились независимо от сущностей мыслящих. Но, отказавшись от иллюзии, Гейзенберг не сказал, как описать мир, говоря о нас самих. Это, пожалуй, является главной причиной, почему желание строить теорию только на наблюдаемых величинах совершенно нелепо. Поэтому задача создания квантовой теории без наблюдателя, т. е. без нас самих, всегда была актуальной. Самыми известными попытками ее решения являются «многомировая» интерпретация, предложенная Эвереттом в 1957 году, и интерпретация Бома 1952 года, вдохновившая Белла на создание знаменитых неравенств Белла.

Но для большинства физиков эта задача была и остается непонятной. В одной из своих последних работ Белл писал об одной из статей 1988 года, которая «особенно выделяется своим здравым смыслом. Автора шокируют "...такие ошеломляющие фантазии, как многомировая интерпретация..". Он отвергает утверждения фон Неймана, Паули, Вигнера, что описание "измерения" не может быть полным без включения в него сознания наблюдателя ». Такое отношение к квантовой механике с позиций здравого смысла характерно для большинства физиков. Во всех или почти во всех учебниках и книгах акт измерения (наблюдения) рассматривается как процесс взаимодействия квантовой системы не с наблюдателем, а с бездушным измерительным прибором. Заблуждение о возможности замены сознания наблюдателя измерительным прибором особенно сильно среди физиков советской школы. Наш выдающийся ученый, лауреат Нобелевской премии академик В. Л. Гинзбург признавался в предисловии к статье «Концепция сознания в контексте квантовой механики», опубликованной в журнале «Успехи физических наук» в 2005 году, что, являясь материалистом, он не понимает, «почему так называемая редукция волновой функции как-то связана с сознанием наблюдателя ». Квантовую механику учили (и учат) так, что многие не знают не только о проблеме «сознания наблюдателя», но даже о редукции волновой функции. Автор статьи «Две методологические революции в физике - ключ к пониманию оснований квантовой механики», опубликованной в 2010 году в журнале «Вопросы философии», признается: «Сам я услышал о ней уже после окончания МФТИ и защиты диссертации по квантовой механике ». Поэтому сам факт постановки задачи создания квантовой теории без наблюдателя должен быть интересен нашим ученым. Этот факт свидетельствует о возрастающем понимании значения работ Джона Белла, сборник которых впервые был опубликован в 1987 году и несколько раз переиздавался, последний раз в 2011 году.

Свет мой зеркальце, скажи,
Да всю правду доложи:
Кто тут взглядом сквозь ресницы
Может схлопывать частицы?

Квантовая версия старой сказки

Моё сознательное решение относительно того, как я буду наблюдать электрон, в некоторой степени определяет свойства этого электрона. Если я задам ему корпускулярный вопрос, он даст мне корпускулярный ответ. Если я задам ему волновой вопрос, он даст волновой ответ.

— Фритьоф Капра

Этот глубокий сдвиг в представлении физиков о сущности их занятий и о значении из формул — не простая причуда учёных. Это была их последняя надежда. Сама мысль о том, что для понимания атомных явлений придётся отказаться от физической онтологии и разработать математические формулы, отражающие скорее знание о наблюдателе, чем о событиях внешнего мира, на первый взгляд настолько абсурдна, что ни одна группа видных и заслуженных учёных ни за что не приняла бы её, кроме как в качестве последнего экстремального средства.

— Генри Стэпп

Столкнувшись с экспериментальными свидетельствами того, что процесс наблюдения влияет на объект, учёные были вынуждены отказаться от представлений, царивших в науке четыре сотни лет, и взяться за проработку революционной идеи: мы непосредственно вовлечены в реальность. Хотя природа и степень нашей способности влиять на реальность до сих пор остаются предметом жарких споров, можно согласиться с формулировкой Фритьофа Капры: «Ключевая идея квантовой теории — наблюдатель необходим не только для того, чтобы наблюдать свойства атомного явления, но и для того, чтобы эти свойства вообще возникли».

Наблюдатель влияет на наблюдаемое

До того, как произведено наблюдение или измерение, объект существует только в качестве «волны вероятности» (на языке физиков — волновой функции ). У неё нет определённого положении или скорости. Эта волновая функция, или волна вероятности, представляет собой всего лишь вероятность того, что при наблюдении или измерении объект окажется здесь или там . У него есть потенциальные местоположения и потенциальные скорости — но мы не можем узнать их значений, пока не проведём наблюдение.

«С этой точки зрения, — пишет Брайан Грин в книге «Ткань космоса», — определяя положение электрона, мы не измеряем объективную, изначально существующую черту реальности. Скорее самим фактом измерения мы непосредственно участвуем в формировании исследуемой реальности». А Фритъоф Капра подводит итог: «У электрона нет объективных качеств, независимых от моего сознания».

Всё это постепенно стирает некогда отчётливую границу между «внешним миром» и субъективным наблюдателем. Они как бы сливаются, или, образно выражаясь, танцуют в совместном процессе открытия — или сотворения? — мира

Проблема измерения

Сегодня этот эффект наблюдения больше известен под названием «проблема измерения». Более ранние описания данного феномена включали в себя сознательного наблюдателя, однако, учёные постоянно старались убрать из своей теории проблемное слово «сознание». Ибо тут немедленно возникает вопрос о том, что такое сознание: если собака увидит результаты эксперимента с электронами, приведёт ли это к схлопыванию волновой функции?

Исключив из теории сознание , учёные продемонстрировали понимание уже упоминавшегося выше факта: от фантазии о том, что можно проводить измерения и не влиять на измеряемый объект, придётся отказаться навсегда. Так называемая «муха на стене», которая сидит себе и никак не влияет на окружающую действительность, просто не может существовать. (И нам не нужно ломать голову над тем, сознательна ли эта муха! )

Для того, чтобы согласовать между собой наблюдателя, измерение, сознание и схлопывание, за достаточно продолжительное время было выдвинуто множество теорий. Первая из таких теорий, которая до сих пор остаётся предметом дискуссий, — это так называемая «копенгагенская интерпретация».

Мне кажется, когда люди говорят о наблюдателе, они упускают один важнейший момент: кто этот наблюдатель? Возможно, мы настолько привыкли к этому слову, что уже не совсем понимаем его. Наблюдатель — это каждый человек, независимо от пола, расы, общественного положения и вероисповедания. Это означает, что КАЖДЫЙ человек обладает способностью наблюдать и изменять субатомную реальность. Возьмите любого человека с улицы — будь то менеджер, сантехник, проститутка, скрипач, полицейский, — и он может делать это. Не только учёные в их священных чертогах. Эта наука принадлежит каждому, поскольку сама по себе наука является метафорой, позволяющей объяснить человека. Объяснить НАС.

Чтобы полностью понять квантовую механику, чтобы полностью определить, что она говорит о реальности.. мы должны вплотную заняться проблемой квантового измерения.

— Брайан Грин, «Ткань космоса».

Вопрос в том, способны ли мы создать математическую модель того, что делает наблюдатель, когда он наблюдает и изменяет реальность? До сих пор нам это не удавалось. Любая из используемых нами математических моделей, включающих в себя наблюдателей, похоже, подразумевает математические разрывы непрерывности. Наблюдатель исключён из физические уравнений по простой причине: так проще.

— Фред Алан Вольф, доктор философии

Копенгагенская интерпретация

Радикальную идею о том, что наблюдатель неизбежно влияет на любой наблюдаемый физический процесс и мы не можем оставаться нейтральными объективными свидетелями предметов и явлений, впервые начали отстаивать Нильс Бор и его коллега-земляки из Копенгагена. Вот почему эту теорию нередко называют копенгагенской интерпретацией. Бор утверждал, что за принципом неопределённости Гейзенберга стоит не только тот факт, что мы не можем одновременно определить, как быстро движется частица и где она находится. Вот как описывает позицию Бора Фред Алан Вольф «Дело не просто в том, что ты не можешь измерить это. Этого вообще нет, пока никто это не наблюдает. А Гейзенберг полагал, что это всё же существует само по себе». Гейзенберг не мог принять мысль о том, что этого нет без наблюдателя. Бор же считал, что частицы сами по себе даже не обретают существования, пока мы их не наблюдаем, и реальность на квантовом уровне не существует, если никто не ведёт наблюдение или измерение

На самом деле многие учёные яростно оспаривали эту сложную и неоднозначную идею, идущую вразрез со здравым смыслом и с нашим повседневным опытом. Эйнштейн и Бор часто спорили до глубокой ночи, и Эйнштейн говорил, что он «просто не может принять это».

До сих пор ведётся дискуссия — можно даже сказать, жаркий спор — о том, только ли человеческое сознание может схлопывать волновые функции и переводить объект из состояния вероятности в точечное состояние

Гейзенберг полагал, что ключевым фактором тут является ум. Он определял сам акт измерения как «акт регистрации результата в уме наблюдателя . Дискретное изменение в функции вероятности происходит в момент регистрации именно вследствие дискретного изменения в нашем знании в момент регистрации, которое и проявляется в дискретном изменении функции вероятности».

Или, как говорит Линн Мактаггарт, избегая научных терминов «Реальность подобна ещё не застывшему желе Внешний мир представляет собой колоссальный неопределённый студень — потенциал нашей жизни А мы своей заинтересованностью, своим вниманием, своим наблюдением заставляем это желе застыть. Таким образом, мы являемся неотъемлемой составляющей процесса реальности. Наше внимание и создаёт эту реальность».

Основы квантовой механики

Эта область исследования возникла в 1970-е годы как попытка убрать «сознательную» составляющую из теорий квантовой механики. Это был более механистический взгляд на проблему измерения. Измерительный прибор в физическом исследовании стали рассматривать как активный фактор.

Вот как описывает это доктор Алберт:

Среди учёных постоянно возникали всё более и более запутанные споры на тему «Может ли кошка вызвать эти же эффекты своим сознанием? А может ли мышь вызвать эти эффекты своим сознанием?» В конце концов стало ясно, что слова, используемые в подобных дискуссиях, настолько неточны, настолько неопределённы, что с их помощью полноценную научную теорию не построишь, — и от этой идеи пришлось отказаться.

Эта работа [основы квантовой механики] представляет собой попытку понять, как нужно трансформировать уравнения, чтобы объяснить изменения в квантовом состоянии элементарных частиц, или какие физические факторы нужно добавить в нашу картину мира, чтобы показать, каким образом эти изменения происходят.

Короче говоря, основы квантовой механики — это попытка посмотреть на квантовую реальность с чисто физической точки зрения — исключая проблемы, связанные с сознательным наблюдателем

Во вселенной Эйнштейна все объекты обладают теми или иными физическими атрибутами со строго определёнными значениями. И эти атрибуты не пребывают в неком призрачном состоянии, ожидая, пока экспериментатор проведёт измерение и тем самым даст им существование. Большинство физиков склонны считать, что в этом Эйнштейн ошибался. С точки зрения этот большинства, корпускулярные свойства обретают существование лишь под воздействием измерения... Когда же наблюдение не осуществляется, корпускулярные свойства призрачны и смутны и характеризуются лишь вероятностью того, что реализуется та или иная потенциальная возможность.

— Брайан Грин, «Ткань космоса».

Теория многих миров

Физик Хью Эверетт предположил, что в момент квантового измерения квантовая функция схлопывается не в одни результат, но реализуется каждый возможный результат В процессе реализации этих результатов Вселенная разделяется на столько версий, сколько существует возможных результатов измерения. Отсюда возникла идея (довольно неуклюжая, но, несомненно, способствующая расширению сознания) о существовании множества параллельных вселенных, где реализованы все квантовые потенциалы.

Задумайтесь на минутку над этой концепцией: всякий раз, когда вы делаете выбор, бесчисленные параллельные возможности, или результаты, реализуются одновременно !

На вопрос о том, остаётся ли положение электрона неизменным, мы отвечаем «нет»;

на вопрос о том, изменяется ли положение электрона со временем, мы отвечаем «нет»;

на вопрос о том, сохраняет ли электрон покой, мы отвечаем «нет»;

на вопрос о том, движется ли он, мы отвечаем «нет».

— Дж. Роберт Оппенгеймер, создатель американской атомной бомбы

Квантовая логика

Математик Джон фон Нейман создал прочную математическую основу квантовой теории. Рассматривая наблюдателя и объект наблюдения, он разбил проблему на три процесса.

Процесс 1 — решение наблюдателя относительно того, какой вопрос он задаст квантовому миру. Свет мой зеркальце, скажи... Этот выбор уже сужает степень свободы квантовой системы, ограничивая её реакции. (На самом деле, любой вопрос ограничивает ответ: если у тебя спрашивают, какие фрукты ты будешь есть на обед, «говядина» не будет уместным ответом.)

Процесс 2 — эволюция состояния волнового уравнения. Облако вероятности эволюционирует по схеме, описываемой волновым уравнением Шрёдингера.

Процесс 3 — квантовое состояние, являющееся ответом на вопрос, сформулированный в ходе реализации процесса 1, или схлопывание частицы.

Один из самых интересных моментов в этой формальной процедуре — решение, какой вопрос задать квантовому миру. Любое наблюдение включает в себя выбор того, что мы намерены наблюдать. Получается, что такие понятия, как «выбор» и «свободная воля», становятся частью квантового события. Вопрос, является ли собака сознательным наблюдателем, остаётся открытым; однако, ответ на вопрос, принимала ли собака когда-нибудь решение (процесс 1) произвести квантовое измерение для исследования волновой природы электрона, кажется вполне очевидным.

Эта теория квантовой логики не определяет, что включено в физическую систему процесса 2. Это означает, что мозг наблюдателя может восприниматься как часть эволюционирующей волновой функции наряду с наблюдаемыми электронами. В связи с этим возник целый ряд теорий, описывающих сознание, разум и мозг. См. Генри Стэпп. Заботливая Вселенная. Мы подробнее остановимся на этом в главе «Квантовый мозг».

Квантовая логика Джона фон Неймана дала важный ключ к решению проблемы измерения: измерение становится измерением благодаря решению наблюдателя. Это решение ограничивает степень свободы реакций физической системы (например, электрона) и тем самым влияет на результат (реальность).

Неореализм

Основателем неореализма был Эйнштейн, который отказывался принять любые толкования, согласно которым обычная реальность не существует сама по себе, независимо от наблюдений и измерений. Неореалисты полагают, что реальность состоит из объектов, чьё поведение согласуется с принципами классической физики, а парадоксы квантовой механики указывают на неполноту и изъяны теории. Этот подход также известен как интерпретация «скрытой переменной». Имеется в виду, что стоит нам обнаружить скрытые факторы — и все парадоксы разрешатся сами собой.

Сознание творит реальность

Эта интерпретация доводит до крайности идею о том, что сам акт сознательного наблюдения является ключевым фактором в создании реальности. При этом акт наблюдения получает привилегированную роль в процессе схлопывания вероятного в реальное. Большинство представителей физической науки воспринимают эту интерпретацию как «эзотерическую» фантазию, свидетельствующую о том, что «эзотерики» не понимают, в чём, собственно, состоит проблема измерения.

Мы отводим обсуждению этого вопроса целую главу. Пока же отметим, что споры на эту тему ведутся тысячелетиями. Древнейшие духовные и метафизические традиции веками утверждали то, что заново сформулировал Амит Госвами: «Сознание — основа всего сущего». Фотоны и нейтроны участвуют в этих дебатах сравнительно недавно. И их появление на скамье свидетелей стало воистину примечательным событием.

Насколько я понимаю, теория неореалистов гласит: «Мы знаем, что квантовая теория неверна, поскольку мы не понимаем её парадоксов, а мы правы, поскольку мы мыслим, руководствуясь здравым смыслом. У нас нет сомнений, что рано или поздно будут обретены новые знания (обнаружена скрытая переменная), которые подтвердят нашу правоту.

Это напоминает утверждение: «Мы знаем, что Элвис жив; просто его пока не нашли».

Когда мы постигаем роль наблюдателя, нам остаётся только склониться перед превосходящим нас разумом, облекающим эту энергию в формы реальности, которым ещё только предстоит присниться нам в этой жизни. Пока мы ощущаем это как хаос, но нет ни малейших сомнений, что в нём есть порядок. Он выше нас. Он глубже.

— Рамта

Целостность

Ученик Эйнштейна Дэвид Бом утверждал: квантовая механика указывает, что реальность представляет собой неделимое целое, где всё взаимосвязано на глубинном уровне, за пределами обычных границ во времени и пространстве. Он выдвинул идею существования некоего «скрытою порядка» (implicate order), из которого рождается некий «явный порядок» (explicate order) (скрытая, нерегистрируемая физическая Вселенная). Именно сворачивание и разворачивание этих порядков порождает разнообразие явлений квантового мира. Из бомовского видения природы реальности родилась «голографическая теория Вселенной». Эту теорию Карл Прибрам и другие учёные использовали для описания мозга и восприятия. В своей недавней беседе с Эдгаром Митчеллом Прибрам высказал мнение, что копенгагенская интерпретация неверна, а квантовая голография представляет собой намного более точную модель реальности.

И ещё есть я...

До сих пор мы говорили главным образом о физической концепции наблюдателя. Но слово «наблюдатель» также может обозначать наиболее интимное ощущение каждого из нас относительно собственного «я». У нас есть ощущение, что где-то внутри сидит «наблюдатель», непрестанно глядящий на мир. Иногда его описывают как «тихий внутренний голос»: во многих духовных учениях и практиках слово «наблюдатель» означает невыразимое сокровенное «я», или внутреннюю природу, которая посредством наблюдения влияет на внешнее эго .

Дзэнскую практику (постоянно присутствовать в текущем моменте и не позволять себе отвлекаться на внешнюю деятельность) тоже можно описать как состояние наблюдателя.

Не удивительно, что стремление связать этого субъективного наблюдателя с научным термином «наблюдатель» оказывается столь сильным — особенно когда возникает впечатление, что учёные говорят именно об этом. Субъект и объект тесно взаимосвязаны. Но если наш внутренний наблюдатель ощущается как нечто пассивное, учёные утверждают, что наблюдение активно. Наблюдение влечёт за собой определённые физические эффекты.

И независимо от того, является ли сознание единственным действующим фактором, уже сам по себе тот факт, что любое измерение изменяет физическую систему, — откровение. Получается, что мы не можем извлечь никакую информацию из системы, не изменив физические свойства этой системы.

Насколько сильно наблюдатель влияет на объект наблюдения?

Хороший вопрос! Вот что говорит Фред Алан Вольф:

Вы не изменяете внешнюю реальность. Вы не изменяете стулья, грузовики, бульдозеры и взлетающие с космодрома ракеты, — не изменяете вы их! Нет! Но вы изменяете собственное восприятие вещей или, возможно, собственные мысли о вещах, собственное ощущение вещей, собственное ощущение мира.

Но почему мы не изменяем грузовики, и бульдозеры, и экологическое положение? Как говорит доктор Джо Диспенза: «Потому что мы утратили силу наблюдения». Он полагает, что идея квантовой физики очень проста: наблюдение оказывает непосредственное воздействие на наблюдаемый мир. Это может побудить людей к тому, чтобы постараться стать более хорошими наблюдателями. Далее Джо говорит:

Субатомный мир реагирует на наблюдение с нашей стороны, но средний человек удерживает своё внимание на чём-то одном не более 6-10 секунд... (Что это за бред? — H.B.) Как же огромный мир может отреагировать на усилия того, кто не способен даже сосредоточиться? Возможно, мы просто плохие наблюдатели. Возможно, мы просто не овладели искусством наблюдения, ведь скорее всего это — именно искусство...

Нам бы нужно ежедневно хоть немного сидеть и просто наблюдать, обдумывать новые возможности будущего для себя. Если мы будем делать это как следует, если будем наблюдать должным образом, то вскоре заметим, что в нашей жизни реализуются новые возможности.

Мы обнаружили что там, где наука продвинулась дальше всего, разум получит от природы то, что сам же в неё вложил. Мы нашли странные отпечатки следов на берегах неведомого. Мы разработали ряд глубоких теорий, чтобы объяснить их происхождение. Наконец нам удалось реконструировать то существо, которое их оставило. И — надо же! Это наши следы.

— Сэр Артур Эддингтон

Мне всегда казалось, что я довольно хладнокровна. Казалось, я полностью контролирую свои эмоции, реакции на людей, места, вещи, время и события. Затем, послушав Фреда Алана Вольфа, Джона Хагелина н других интервьюируемых, я осознала, что представляю собой не более, чем мячик» отскакивающий от стен жизни. Я просто удивляюсь, что до сих пор не разбила себе голову! Когда я начала более внимательно наблюдать, что происходит у меня «внутри», и использовать это для изменения своего восприятия «внешних» событий, моя жизнь наполнилась новыми возможностями. Я сделала и увидела вещи, которые никогда и не надеялась увидеть и сделать, время течёт для меня гораздо медленнее, и благодаря этому я успеваю наблюдать и выбирать — вместо того, чтобы реагировать и сожалеть.

— Бетси

Изменить свою повседневную реальность

А теперь перейдём с субатомною уровня на уровень человеческий и спросим: что такое наблюдение? Для людей дверь к наблюдению — восприятие. Ваше восприятие. А вы помните из предыдущих глав, насколько это сомнительный процесс? («Свет мой зеркальце, скажи кто... на свете всех милее?») Говорит Амит Госвами:

Любое наблюдение может восприниматься как квантовое измерение, поскольку, как и в результате квантового измерения, мы получаем информацию, которая откладывается в мозгу в виде воспоминаний. Эти воспоминания в мозгу активизируются всякий раз, когда мы ощущаем повторный стимул. Повторный стимул всегда вызывает не только самое первое впечатление, но и всю цепочку вторичных отпечатков в памяти.

Мы всегда воспринимаем что-то лишь после того, как это отразится в зеркале памяти. Именно это отражение в зеркале памяти даёт нам ощущение того, кто и что такое «я» — конструкция из привычек, из воспоминаний, из прошлого.


Иными словами:
Воспоминания -> (прошлое) — Восприятие -> Наблюдение -> (воздействие на) Реальность

Стоит ли удивляться, что такие системы, как «Курс чудес», подчёркивают важность прощения как важного фактора, помогающего изменить настоящее? А вспомните учение Христа: сколько внимания он уделял прощению. А как он сказал о восприятии: «И что ты смотришь на сучок в глазе брата твоего, а бревна в твоём глазе не чувствуешь?». И о высшем наблюдении: «Возлюби ближнего твоего, как самого себя».

Нас всех интересует, как можно изменять свою повседневную реальность. Если реальность — лишь реакция на вопросы, т.е., настрой разума, и каждый ответ находится в конце длинной цепочки воспоминаний, ощущений и наблюдений, то нас уже интересует не столько вопрос, как изменять реальность, сколько, почему мы сохраняем эту реальность одной и той же. В ответе на этот вопрос — ключ к переменам.

Проблема измерения является проблемой лишь потому, что она подчёркивает наше представление о том, что мы находимся вне наблюдаемого. Но даже простейший измерительный прибор взаимодействует с измеряемой системой и изменяет её. В наблюдаемой реальности присутствует текучесть, которая, казалось бы, противоречит миру гарантированного утреннего кофе и безотказно взлетающих ракет. И всё же это — фундаментальная черта взаимодействия аспектов реальности.

Ключевое слово здесь — «взаимодействие». Или мы могли бы сказать — соединение, или сплетение, или присутствие в одном волновом уравнении. Эта идея об изначальной неделимости всех вещей то и дело высказывается поборниками квантовой теории.

И кто мы такие, чтобы спорить с мириадами электронов?

«Кто тут взглядом сквозь ресницы может схлопывать частицы?» Не кто — что . Всё!

Но остаётся ещё вопрос: это может только кто-то и что-то или также никто и ничто — разум, дух, сознание? И если да, то не являются ли они столь же реальными, как объекты, которые схлопываются? В мире иллюзий разделение на «что-то» и «ничто» может оказаться именно тон иллюзией, на которой держатся все остальные.

«С точки зрения квантовой механики Вселенная исключительно интерактивна», — пишет учёный Дэн Уинтерс в статье с очень провокационным названием «Существует ли вселенная, когда мы на неё не смотрим?» В этой статье он излагает идею «творения через наблюдение», сформулированную физиком из Принстонского университета Джоном Уилером. Уилер (коллега Альберта Эйнатейна и Нильса Бора, в также создатель термина «чёрная дыра») говорил: «Мы не просто зрители перед космической сценой. Мы творцы и обитатели интерактивной Вселенной»

Подумайте об этом...

— Можете ли вы идентифицировать себя как наблюдателя, если вы — наблюдатель?

— Кто или что такое «я»?

— Кто или что такое наблюдатель?

— Являетесь ли вы отделённой от мира сущностью?

— Можете ли вы наблюдать внутри себя что-то помимо «я»?

— Ели вы можете стать наблюдателем по отношению к своему «я», как это изменит ваше восприятие реальности?

— Если для создания реальности нужен наблюдатель, насколько сосредоточенным наблюдателем являетесь вы? Какую реальность вы создаёте в своём нынешнем состоянии наблюдения?

— Как долго вы способны удерживать какую-либо мысль?

— Существует ли реальность, когда вы её не наблюдаете?

— Если для схлопывания реальности требуется наблюдатель, что поддерживает целостность нашего тела, пока вы спите?

— Кто или что тогда является наблюдателем?