Переформулировка квантовой механики. Волновая функция и ее статистический смысл. Условие нормировки волновой функции

Экспериментальное подтверждение идеи Луи де Бройля об универсальности корпускулярно-волнового дуализма, ограниченность применения классической механики к микрообъектам, диктуемая соотношением неопределенностей, а также противоречия ряда экспериментов с применяемыми в начале XX века теориями привели к новому этапу развития квантовой физики – созданию квантовой механики, описывающей законы движения и взаимодействия микрочастиц с учетом их волновых свойств. Ее создание и развитие охватывает период с 1900 г. (формулировка Планком квантовой гипотезы) до 20-х годов XX века и связано, прежде всего, с работами австрийского физика Э. Шредингера, немецкого физика В. Гейзенберга и английского физика П. Дирака.

Необходимость вероятностного подхода к описанию микрочастиц является важнейшей отличительной особенностью квантовой теории. Можно ли волны де Бройля истолковывать как волны вероятности, т.е. считать, что вероятность обнаружить микрочастицу в различных точках пространства меняется по волновому закону? Такое толкование волн де Бройля уже неверно, хотя бы потому, что тогда вероятность обнаружить частицу в некоторых точках пространства может быть отрицательна, что не имеет смысла.

Чтобы устранить эти трудности, немецкий физик М. Борн в 1926 г. предположил, что по волновому закону меняется не сама вероятность , а величина , названная амплитудой вероятности и обозначаемая . Эту величину называют также волновой функцией (или -функцией). Амплитуда вероятности может быть комплексной, и вероятность W пропорциональна квадрату ее модуля:

(4.3.1)

где , где – функция комплексно-сопряженная с Ψ.

Таким образом, описание состояния микрообъекта с помощью волновой функции имеет статистический , вероятностный характер: квадрат модуля волновой функции (квадрат модуля амплитуды волны де Бройля) определяет вероятность нахождения частицы в момент времени в области с координатами x и dx , y и dy , z и dz .

Итак, в квантовой механике состояние частицы описывается принципиально по-новому – с помощью волновой функции, которая является основным носителем информации об их корпускулярных и волновых

. (4.3.2)

Величина (квадрат модуля Ψ-функции) имеет смысл плотности вероятности , т.е. определяет вероятность нахождения частицы в единице объема в окрестности точки , имеющей координаты x , y , z . Таким образом, физический смысл имеет не сама Ψ-функция, а квадрат ее модуля , которым определяется интенсивность волн де Бройля .

Вероятность найти частицу в момент времени t в конечном объеме V , согласно теореме о сложении вероятностей, равна:

.

Т.к. определяется как вероятность, то необходимо волновую функцию Ψ представить так, чтобы вероятность достоверного события обращалась в единицу, если за объем V принять бесконечный объем всего пространства. Это означает, что при данном условии частица должна находиться где-то в пространстве. Следовательно, условие нормировки вероятностей:

(4.3.3)

где данный интеграл вычисляется по всему бесконечному пространству, т.е. по координатам x , y , z от до . Таким образом, условие нормировки говорит об объективном существовании частицы во времени и пространстве.

Чтобы волновая функция являлась объективной характеристикой состояния микрочастицы, она должна удовлетворять ряду ограничительных условий. Функция Ψ, характеризующая вероятность обнаружения микрочастицы в элементе объема, должна быть:

· конечной (вероятность не может быть больше единицы);

· однозначной (вероятность не может быть неоднозначной величиной);

· непрерывной (вероятность не может меняться скачком).

Волновая функция удовлетворяет принципу суперпозиции: если система может находиться в различных состояниях, описываемых волновыми функциями , , … , то она может находиться в состоянии, описываемом линейной комбинацией этих функций:

где (n = 1, 2, 3…) – произвольные, вообще говоря, комплексные числа.

Сложение волновых функций (амплитуд вероятностей, определяемых квадратами модулей волновых функций) принципиально отличает квантовую теорию от классической статистической теории , в которой для независимых событий справедлива теорема сложения вероятностей.

Волновая функция Ψ является основной характеристикой состояния микрообъектов . Например, среднее расстояние электрона от ядра вычисляется по формуле

,

Переформулировка квантовой механики

1. Суть проблемы

Свое знаменитое уравнение Шрединберг не выводил, он его угадал:

Масса частицы;

Мнимая единица;

Квантовая постоянная;

Энергия поля;

Шредингеровская волновая комплексная функция (амплитуда волн де Бройля).

Физический смысл волновой функции, вернее, квадрата ее модуля был установлен в соответствии с копенгагенской трактовкой, как плотность вероятности волновой функции. Вероятность обнаружить частицу в заданной точке в заданное время равна нулю, поэтому и говорят не о вероятности, а о плотности вероятности.

Здесь нет никакой натяжки. Ситуация вполне реальная, например, вероятность падения шара в выбранную на его поверхности точку равна нулю, но шар обязательно упадет в какую-либо точку.

Вероятность обнаружить частицу в заданном объеме пространства в момент времени в копенгаганской трактовке:

(2)

Основоположникам статистической физики не приходило в голову представлять молекулу или атом в виде размытого облака по всему объему сосуда. Не очень их волновало и то, что в статистической физике пришлось распрощаться с понятием «траектория частицы». Случайность в микромире воспринималась Максвеллом, Больцманом и Гиббсом как вполне объективная закономерность. Ведь на самом деле траектории прдолжали существовать.

Вполне закономерно поэтому, что против предложенной Борном статистической трактовки волновой функции выступали Щредингер, де Бройль, Эйнштейн и другие менее известные физики..

Суть проблемы сводилась к выяснению вопроса о том, действительно ли электрон и другие элементарные частицы являются неделимыми, и тогда волновая функция не имеет физического смысла, или электрон и другие элементарные частицы не являются первокирпичиками материи, а состоят из более мелких, действительно фундаментальных частиц. В этом случае волновая функция приобретала реальный физический смысл: в механике – это амплитуда колебаний материальных частиц, а в электродинамике – амплитуда колебаний частиц, составляющих заряд электрона. Правда, в последнем случае требовалось каким - то образом объяснить, почему электрон не разлетается под действием сил кулоновского отталкивания.

2. Абсолютная система измерения физических величин

С помощью абсолютной системы измерения физических величин была установлена размерность волновой функции.

В основу построения абсолютной системы измерения физических величин положена формула:

Где и - единицы измерения времени и расстояния в системе СИ.

Формула (3) является следствием более глубокой теории строения материи, рассмотрение которой выходит за рамки рассматриваемой проблемы переформулировки квантовой механики. Отметим лишь, что формула (3) отражает диалектическое единство и противоположность пространства и времени.

В абсолютной системе измерения физических величин можно все величины выразить либо в метрах, либо в секундах. Например, чтобы выразить все величины в метрах, надо в формулу равномерного движения

Подставить размерности , . В результате получаем размерность скорости в абсолютной системе измерения физических величин:

Подбирая физические формулы таким образом, чтобы в них входила лишь одна физическая величина неизвестной размерности, можно вычислить размерности всех физических величин в абсолютной системе единиц измерения.

Так, например, размерность имеют: длина, частота, угловая скорость, градиент скорости, объемный расход, электрический заряд, поток электрического смещения, напряженность магнитного поля, абсолютная магнитная проницаемость, температура, и т. д.

Размерность имеют: площадь, угловое ускорение, скорость, масса, удельный вес, динамическая вязкость, индуктивность, магнитная проводимость, и т. д.

Размерность имеют: объем, ускорение, объемная плотность энергии, давление, кинематическая вязкость, напряженность гравитационного поля, Коэффициент диффузии , электрическое сопротивление, удельная теплоемкость, газовая постоянная, и т. д.

Размерность имеют: импульс, поверхностное натяжение, плотность потока энергии, момент инерции, потенциал гравитационного поля, напряженность электрического поля, удельное электрическое сопротивление, магнитный поток, магнитный момент контура с током, удельное количество теплоты, и т. д.

Размерность имеют: сила, постоянная планка, момент импульса, действие, электрическое напряжение, теплопроводность, и т. д.

Размерность имеют: энергия, работа, момент силы, количество теплоты, и т. д.

Размерность имеет сила.

Размерность имеет плоский и телесный угол.

Из формулы (3) следует, что , что позволяет вывести следующие соотношения:

(6)

(8),

Физическая величина, имеющая размерность в абсолютной системе измерения физических величин.

3. Размерность волновой функции

Теперь мы можем определить размерность волновой функции в уравнении Шредингера (1). Первый член уравнения

И сомножитель имеют одинаковую размерность, поэтому

(9)

Разделив обе части (9) на имеем:

(10)

Уравнение (10) справедливо только при

Итак, вопреки утверждениям Борна, абсолютная система измерения физических величин позволила нам установить размерность волновой функции в абсолютной системе измерения физических величин. Но такую размерность имеют механические метры, постоянная Планка, электрические кулоны и термодинамическая температура. Значит, уравнения механики, квантовой механики, электродинамики и термодинамики – инвариантны.

Но почему копенгагенская интерпретация запрещает придавать волновой функции физический смысл? Все дело в том, что в уравнении (2) Борн приравнял к нулю квадрат модуля волновой функции в предположении что размерность волновой функции равна и этим самым наложил запрет на наделение волновой функции какими - либо физическими свойствами.

На самом деле, как это следует из абсолютной системы измерения физических величин, волновую функцию можно выразить как через пространственные, так и через временные координаты и безразмерную величину имеет лишь произведение этих функций:

Функция комплексно сопряжена с .

Правильный результат в копенгагенской интерпретации волновой функции в формуле (2) обеспечивается только в случае независимости пространства от времени . Требование независимости переменных – это требование теории вероятности. Второе условие, неявно накладываемое формулой (2) – условие неизменности размерности волновой функции.

Теория относительности выявила взаимозависимость пространства и времени, а это означает, что формулой (2) можно пользоваться только при скоростях движения систем, значительно меньших скорости света.

При наблюдении за объектом из трехмерного пространства (см. Рис.) и квадрат выглядит квадратом с размерностью . Если начать разгонять квадрат параллельно его плоскости, то длина одной из сторон, согласно СТО начнет сокращаться и при квадрат превратится в отрезок с размерностью . Этому соответствует точка на рисунке, а точке соответствует вся копенгагенская трактовка волновой функции, когда , а


Таким образом, борновское истолкование волновой функции есть лишь частный случай ее более широкого истолкования в переформулированной с точки зрения абсолютной системы измерения физических величин квантовой механики.

Чтобы понять истинный физический смысл волновой функции, нам придется переосмыслить само понятие движения.

4. Что такое движение?

Физика столкнулась с квантами энергии, но в случае электрона она не вышла на кванты электрических зарядов и кванты массы.

Переформулировка квантовой механики на основе абсолютной системы измерения физических величин позволяет вернуться к классическому вероятностному описанию электрона и других элементарных частиц методами статистической механики для большого числа составляющих электрон действительно фундаментальных частиц.

Действительно квантовые эффекты проявляются при описании распространения света.

Наше трехмерное пространство – квантованное, поэтому в нем парадоксы Зенона не действуют и возможно применение двузначной логики. Но во Вселенной есть безразмерное пространство нулевого числа измерений, отождествляемое в физике с энергией или временем. Это пространство не квантованное, в нем действуют парадоксы Зенона и к нему не применима аристотелевская двузначная логика. Похоже на то, что научное знание имеет границы своей применимости и эти границы начинаются там же, где начинается пространство нулевого числа измерений.

В апориях «дихотомия» и «Ахиллес» Зенон придерживается аксиомы непрерывности пространства и времени в смысле их актуальной абстрактной бесконечности. Без допущения этой аксиомы обе апории разрушаются.

В апориях «стрела» и «стадий» Зенон придерживается аксиомы дискретности пространства и времени. Апории рушатся, если из гипотезы движения убрать аксиомы дискретности.

Попытки опровергателей Зенона представить дело так, будто апории «стрела» и «стадий» не имеют смысла и поставить их в укор философу, не выдерживают никакой критики. Напротив, заслуга Зенона в том и состоит, что он поставил вопрос, который на протяжении двух с половиной тысячелетий пытаются бездарно похоронить опровергатели всех мастей видимостью своих псевдоответов.

Гёдель своей теоремой о том, что в любой непротиворечивой теории имеется недостаточное количество аксиом, а полный набор аксиом приводит к противоречивой теории, внес существенный вклад если и не в разрешение, то в разъяснение сути парадоксов Зенона. По Гёделю полная теория движения должна включать в себя противоречивые гипотезы дискретного и непрерывного пространства и времени.

Мы можем утверждать, что суть парадоксов Зенона не в изъянах его логики, а в противоречивости самого движения. Мы очень мало знаем о самом движении. Наука считает движением нахождение в разные моменты времени в разных местах. Понятие о движении у нас менее критично, чем у элеатов, мы называем движением то, что элеаты движением никогда бы не назвали.

В нашем понимании движется одно и то же тело. Галилей трактовал движение как совокупность «продвинутостей», то есть таким же, каким его описал Зенон в апории «стрела». И наука дальше такого понимания движения не шла. По крайней мере до появления на свет квантовой механики

В дискретной модели движения объект даже не прыгает из точки в точку, а исчезает из одной точки пространства и появляется в другой. Это даже не один и тот же объект, а два разных объекта. В противном случае мы приходим к гипотезе непрерывности пространства и времени.

Современная квантовая физика отошла от модельного представления физических процессов. Считается например, что корпускулярно-волновой дуализм невозможно представить в виде какой-нибудь модели. Физик В. А. Фок (1898-1974) дал такую трактовку корпускулярно-волнового дуализма: “Можно сказать, что для атомного объекта существует потенциальная возможность проявлять себя, в зависимости от внешних условий, либо как волна, либо как частица, либо промежуточным образом. Именно в этой потенциальной возможности различных проявлений свойств, присущих микрообъекту, и состоит дуализм волна - частица. Всякое иное, более буквальное, понимание этого дуализма в виде какой-нибудь модели неправильно.”

Полная геометризация физики на основе абсолютной системы измерения физических величин напрочь опровергает подобную точку зрения. Возможно построение геометрических моделей любых физических процессов. Для микромира нет своих, специальных законов. Природа едина и законы природы едины.

4. Квантовая теория относительности

Многочисленные попытки ввести в рамках специальной теории относительности фундаментальную длину, чтобы построить свободную от расходимостей теорию, показывают, что это неизбежно приводит к нарушению принципа причинности. Для того, чтобы совместить теорию относительности с квантовой механикой, нужно проквантовать само пространство и время.

Отправной точкой в построении квантовой теории относительности служит принцип неопределенностей Гейзенберга. Самый известный спор о принципе неопределенностей произошел на пятом Сольвеевском международном конгрессе ученых в 1927 году в Брюсселе. и Нильс Бор. Спорили о том, вероятностна ли в основе своей Вселенная. По легенде, именно на этом конгрессе Эйнштейн произнес свое знаменитое «Бог в кости не играет»

Через два года после конгресса, основательно обдумав создавшееся положение, Эйнштейн, совместно с Подольским и Розеном, предлагает мысленный эксперимент, по его мнению, напрочь опровергающий реальность существования волновой функции, квадрат модуля которой, как известно, определяет вероятность нахождения электрона в точке x, y, z трехмерного пространства.

Суть эксперимента состоит в следующем. Пусть система состоит из двух электронов и пусть в какой-то момент времени электроны находятся на большом (известном) расстоянии друг от друга. Пусть также электроны обладают известным суммарным импульсом. Если измерить импульс первого электрона, то импульс второго электрона можно найти немедленно, ведь сумма импульсов известна. С другой стороны, если кто-нибудь измерил положение первого электрона, то мгновенно становится известным и положение второго. Это означает, что, наблюдая состояние первого электрона, мы можем мгновенно изменить волновую функцию так, что второй электрон станет занимать определенное положение и обладать определенным импульсом, несмотря на то, что мы к нему и близко не подходили.

Интересно, что подобный эксперимент был, в конце концов, проведен и показал, что все происходит именно так, как описал Эйнштейн, и что волновая функция изменяется практически мгновенно. Один из экспериментов проводился в 2008 году на фотонах, находящихся в определенном «спутанном состоянии». Ученые университета Женевы разделяли пары спутанных фотонов и отправляли их по оптическому волокну на два детектора, находящиеся в противоположных направлениях на расстоянии 9 километров от излучателя. Детекторы на входе и выходе определяли «цвета» фотонов (их волновые характеристики). Измерения повторялись неоднократно в течение 12 часов. Оказалось, что физические свойства фотонов менялись одинаково и синхронно. Если один фотон становился «красным», то второй – тоже. Не удалось засечь время запаздывания, но в пределах точности аппаратуры можно было утверждать, что волновая функция изменялась со скоростью, превосходящей скорость света не менее чем в 10000 раз. Обе частицы как бы следуют сигналу внешнего «регулировщика движения».

Ни одна физическая теория дать удовлетворительного объяснения результатов экспериментов не смогла. Ведь если в природе существуют явления, при которых скорость передачи взаимодействий бесконечно велика, то тела могут действовать друг на друга на расстоянии и при отсутствии материи между ними. Такое воздействие тел друг на друга в физике называют дальнодействием. Когда же тела действуют друг на друга с помощью материи, находящейся между ними, то их взаимодействие называется близкодействием.

У многих физиков нет привычки говорить «не знаю», когда проблема не решается доступными им средствами, поэтому неоднократно заявлялось, что парадокс Эйнштейна, Подольского и Розена разрешен, но всякий раз оказывалось, что это не так.

По существу проблема сводится все к тем же парадоксам Зенона и требует для своего разрешения принятия одного из двух постулатов: либо пространство и время дискретны (позиция Бора), либо пространство и время непрерывны (позиция Эйнштейна). Ошибочность позиции Бора состоит в том, что признавая дискретность трехмерного пространства и времени, он допускает бесконечную скорость передачи взаимодействий в нем.

Для передачи воздействия одного тела на другое через промежуточную среду, необходимо некоторое время, так как любые процессы в материальной среде передаются от точки к точке с конечной и вполне определенной скоростью. В специальной теории относительности утверждается, что нет скорости передачи взаимодействий больше, чем м /с. Ошибочность позиции Эйнштейна состоит в том, что признавая непрерывность пространства и времени (пространство и время нулевого числа измерений), он ограничивает скорость передачи взаимодействий в нем.

В § 3 мы показали, что специальная теория относительности описывает лишь один частный случай из множества фазовых пространственно-временных преобразований. Наше трехмерное пространство, в котором происходит преобразование двумерного пространства в одномерное, не является абсолютной пустотой, именно поэтому м/c. Из-за различного соотношения пространства и времени в квантах материи, плотность пространства скачкообразно уменьшается при переходе к пространствам большего числа измерений. Забегая вперед скажем, что в пространстве четвертого числа измерений, например, все процессы протекают в раз быстрее, чем в нашем трехмерном пространстве.

Макс Планк предложил в качестве естественных единиц использовать единицы, построенные из фундаментальных констант:

= 1,6м

Легко убедиться, что размерности планковской длины, массы, и времени соответствуют размерностям абсолютной системы измерения физических величин. Хуже обстоит дело с численными значениями фундаментальных планковских величин. В области значений, достигнутых современной физикой, эти величины имеют порядок: ~м, ~c. Можно предположить, что мы еще не достигли планковских значений длины и времени, но что делать с планковской массой? Ведь планковская масса – это масса обычной пылинки, состоящей из миллионов атомов, и поэтому она не может быть фундаментальной массой. На самом деле ситуация еще хуже.

Мы установим, что гравитационная постоянная не такая уж фундаментальная, она есть производная от скорости света. Более того, так как скорость света имеет производную, отличную от нуля, то она тоже является величиной переменной, и быть фундаментальной константой никак не может. Но и это еще не все. Чтобы соблюдался закон сохранения энергии, вместе со скоростью света должна изменяться и постоянная Планка. Похоже на то, что в природе вообще нет ничего постоянного и правы релятивисты, утверждающие, что все относительно. Но это не так. Чтобы соблюдался закон сохранения энергии, скорость света и постоянная Планка в должны изменяться так, чтобы

м ~

Так как нет силы, меньше, чем h, и нет скорости, больше чем с , (мы рассматриваем с с позиций наблюдателя, находящегося в трехмерном пространстве), то величина , принадлежащая пространству первого измерения, является той самой фундаментальной длиной, поисками которой квантовая механика занималась с момента своего появления:

Итак, (4.1) дает нам минимальное значение физических величин пространства первого измерения. В теории многомерных пространств принцип неопределенностей Гейзенберга можно сформулировать следующим образом: минимальное значение физических величин пространства пятого измерения равно постоянной Планка:

Зная и , не составляет труда найти формулу для вычисления минимальных значений физических величин пространства любого числа измерений, такую, чтобы размерности физических величин соответствовали размерностям пространства:

Принцип неопределенностей Гейзенберга является частным случаем формулы (4.3) при , и в одном из возможных вариантов может быть записан в виде:

(4.4)

где: и - неопределенности в определении координаты и скорости тела, имеющего массу .

Неопределенности никак не связаны с наблюдателем, они полностью определяются квантовыми свойствами пространства-времени. В квантовой теории относительности наблюдатель выведен из наблюдаемого пространства в пространство большей размерности и никак не может влиять на результаты измерений.

Причина, по которой специалист в области квантовой механики Р. Фейнман мог совершенно спокойно сказать, что квантовую механику не понимает никто, кроется в том, что основы квантовой механики были сформулированы не полностью.

Формула (4.3) – это формула общего члена геометрической прогрессии, образующей некоторое гипердействительное число. Отношение минимальных порций (квантов) двух соседних пространств есть величина постоянная:

Справедливость (4.5) доказывается прямой подстановкой значений и в формулу (4.3)

При фазовых пространственно-временных преобразованиях изменяется размерность пространства. Процесс происходит с соблюдением закона сохранения материи, поэтому увеличение (уменьшение) количества пространства приводит к уменьшению (увеличению) количества времени в материи:

Из (4.5) и (4.6) следует, что максимальная скорость протекания процессов в двух соседних пространствах отличается в число раз:

(4.7)

Формула (4.7) не отменяет принципа относительности, физические процессы протекают одинаково в пространствах любой размерности. На основании (4.7) можно лишь утверждать, что в пространствах различной размерности процессы протекают с различной максимальной скоростью. Увеличение времени жизни элементарных частиц объясняется не только замедлением (увеличением масштаба) времени, но и сокращением масштаба пространства.

Значение максимальной скорости изменяется скачкообразно при изменении размерности пространства-времени. Постулат постоянства скорости света действует лишь в пространстве фиксированного числа измерений. Переходя к пространству большей размерности, мы принимаем за ноль скорость света пространства меньшей размерности.

Линейные размеры квантов абсолютных (не искривленных) пространств найдем, исходя из чисто геометрических соображений:

По (4.8) получаем, что квант абсолютного одномерного пространства – это отрезок прямой длиной 7,37м; квант двумерного пространства – это квадрат со стороной 1,13м; квант трехмерного пространства – это куб со стороной 1,30м.

Линейные размеры квантов абсолютного пространства-времени связаны с соответствующими размерами времени соотношением:

Из (4.9) следует, что минимально возможная продолжительность процессов в пространстве первого измерения составляет 2,45с; в пространстве второго измерения – 3,76с; а в пространстве третьего измерения – 4,34с

Радиус кванта замкнутого (равномерно искривленного) пространства согласно (3.6):

(4.10)

Число квантов в замкнутом пространстве:

(4.11)

Из (4.3) и (4.11) следует, что энергия, связывающая кванты пространства-времени в единую физическую систему, равна:

Эта же энергия выделяется при фазовых пространственно-временных преобразованиях . Формула энергии Эйнштейна есть частный случай формулы (4.12) при . По формуле Эйнштейна мы извлекаем энергию связи квантов двумерного пространства на атомных электростанциях . Но энергия связи есть и у квантов трехмерного пространства, или, как его сейчас называют, физического вакуума :

Можно вычислить, что в одном кубическом метре трехмерного пространства сосредоточена энергия, эквивалентная энергии 1130 тонн тротила. Если мы научимся расщеплять кванты вакуума, то получим неисчерпаемый источник энергии. Помимо всего прочего, мы получим возможность не создавать большие запасы энергии на космических кораблях, а черпать ее прямо из космического пространства.

В теории многомерных пространств можно рассматривать дробные размерности пространства (рис.1). Широкое применение дробных интегралов и производных сдерживается отсутствием их четкого физического истолкования, такого, например, как у обыкновенного интеграла и обыкновенной производной.

В классической геометрии нет промежуточных объектов между точкой () и отрезком прямой (), между отрезком прямой и квадратом () и так далее. В общем случае значение суммарной дробной размерности находится по формуле:

Неподвижное двумерное пространство имеет размерность , это же пространство, движущееся со скоростью света, имеет размерность , а его суммарная дробная размерность при равна:

Целые показатели размерности бывают только у неподвижных пространств. Это предельный идеальный случай, который мы можем представить себе только теоретически, ведь реальное пространство – время без движения не существует.

Зачастую дробные показатели размерности считают противоестественными. Такой взгляд стал возможным лишь из-за того, что показатели размерности в большинстве физических процессов мало отличаются от целых чисел ввиду малых скоростей движения реальных физических объектов.

Дробные степени в показателях размерностей возникают также при описании фрактальных (разномасштабных, подобных целому) сред. В фрактальной среде, в отличие от сплошной среды, случайно блуждающая частица удаляется от места старта медленнее, так как не все направления движения становятся для нее доступными. Замедление диффузии в фрактальных средах настолько существенно, что физические величины начинают изменяться медленнее первой производной и учесть этот эффект можно только в интегрально – дифференциальном уравнении, содержащем производную по времени дробного порядка

Числа, обратные бесконечно малым, есть числа бесконечно большие. Например, число, обратное , дает максимальное значение физических величин пространства минус первого измерения, то есть, времени:

Так как образуют геометрическую прогрессию, то и числа должны образовывать геометрическую прогрессию. Кроме того, размерности должны соответствовать размерностям физических величин в абсолютной системе измерения. Всем этим требованиям удовлетворяет формула

Формула (4.3) описывает физические пространства отрицательной кривизны микромира, а формула (4.13) – пространства положительной кривизны Вселенной. Численные значения максимальных и минимальных значений физических величин приведены в табл.2.

Соответствует размерности материи, следовательно обычная математика работает с безразмерными точными числами от нуля до невообразимо велики. В квантовом микромире пренебрежение неопределенностями может привести к ошибкам. При устойчивых физических процессах и сходимости к определенному результату, неопределенности должны быть достаточно малыми, чтобы можно было использовать обычную логику и математику.

В неустойчивых процессах неопределенности должны приводить к полной «размытости» результата, что делает возможным применение традиционных вероятностных методов квантовой механики. Если процесс неустойчивый, то малая «размытость» приводит к неопределенности результата.

В любом случае следует остановиться, достигнувили .

Наличие неопределенностей делает возможным применение так называемой «целесообразной логики». Целесообразная логика не претендует на роль главной логической конструкции. Она определяет область применимости известных вариантов неклассической логики, таких как конструктивная, релевантная (уместная), многозначная и нечеткая логика. В этой логической системе высказывание А = В верно или неверно в зависимости от того, сколь велика разность А – В и препятствует ли это достижению цели.

В рамках целесообразной логики проблема осла, стоящего между двумя стогами сена, решается путем перехода к рассмотрению ансамбля ослов. Ослы располагаются не точно посредине, а в некотором пространстве между стогами. В этом случае ослы распределятся на две равные группы и пойдут по кратчайшему пути, одни направо, а другие налево. Такое поведение ослов целесообразно. Вопрос о том, куда пойдет каждый конкретный осел ставить нецелесообразно. В этом и состоит плата за переход к вероятностным методам вычислений.

В рамках классической логики осел останется на месте и умрет от голода. Такое поведение осла нецелесообразно. При применении целесообразной логики, как и при применении обычной логики, вычисления следует прекратить, достигнув или . Мы не имеем права переходить границы научного познания.

Следует обратить внимание на одно важное обстоятельство: мы переходим к вероятностным вычислениям не из-за того, что достигли , а из-за того, что достигли предела точности наших приборов. Сторонники копенгагенской трактовки квантовой механики поторопились объявить, что физика вышла на минимальные значений физических величин, ограничивающих действие физических законов и применение обычной логики. В связи с этим неправильно считать, что электрон и другие элементарные частицы не обладают внутренней структурой. Возможно построение механических моделей электрона и элементарных частиц из строительных блоков одномерного пространства (струны длинойм) двумерного пространства (сферы площадью м2) и трехмерного пространства (кубики объемомм3).

Более того, у нас появляется возможность дать математическое определение и систематизировать некоторые физические величины, ранее такого определения не имевшие.

Материя: ;

Эфир: . В эфире взаимодействия либо не передаются (), либо передаются мгновенно (), лишены смысла понятия пространственной и временной протяженности, часть равна целому, начало совмещено с концом, бесконечно большое равно бесконечно малому. В эфире не соблюдается принцип причинности. Необычность физических свойств эфира привела к отказу от него в начале XX века;

Физический вакуум: . Это трехмерное пространство без вещества и поля

Формула (4.13) расширяет действие принципа неопределенностей Гейзенберга на максимальное значение всех физических величин. Из (4.3) и (4.13) следует, что принцип неопределенностей Гейзенберга – это лишь частный случай неопределенностей значений физических величин пространства пятого измерения и должен записываться в виде:

(4.14)

Если - число измерений движущегося пространства, то при теория многомерных пространств дает теорию суперструн, при - специальную, а при - общую теорию относительности.

В этой статье описывается волновая функция и ее физический смысл. Также рассматривается применение этого понятия в рамках уравнения Шредингера.

Наука на пороге открытия квантовой физики

В конце девятнадцатого века молодых людей, которые хотели связать свою жизнь с наукой, отговаривали становиться физиками. Бытовало мнение, что все явления уже открыты и великих прорывов в этой области уже не может быть. Сейчас, несмотря на кажущуюся полноту знаний человечества, подобным образом говорить никто не решится. Потому что так бывает часто: явление или эффект предсказаны теоретически, но людям не хватает технической и технологической мощи, чтобы доказать или опровергнуть их. К примеру, Эйнштейн предсказал более ста лет назад, но доказать их существование стало возможным лишь год назад. Это касается и мира (а именно к ним применимо такое понятие, как волновая функция): пока ученые не поняли, что строение атома сложное, у них не было необходимости изучать поведение таких маленьких объектов.

Спектры и фотография

Толчком к развитию квантовой физики стало развитие техники фотографии. До начала двадцатого века запечатление изображений было делом громоздким, долгим и дорогостоящим: фотоаппарат весил десятки килограммов, а моделям приходилось стоять по полчаса в одной позе. К тому же малейшая ошибка при обращении с хрупкими стеклянными пластинами, покрытыми светочувствительной эмульсией, приводила к необратимой потере информации. Но постепенно аппараты становились все легче, выдержка - все меньше, а получение отпечатков - все совершеннее. И наконец, стало возможно получить спектр разных веществ. Вопросы и несоответствия, которые возникали в первых теориях о природе спектров, и породили целую новую науку. Основой для математического описания поведения микромира стали волновая функция частицы и её уравнение Шредингера.

Корпускулярно-волновой дуализм

После определения строения атома, возник вопрос: почему электрон не падает на ядро? Ведь, согласно уравнениям Максвелла, любая движущаяся заряженная частица излучает, следовательно, теряет энергию. Если бы это было так для электронов в ядре, известная нам вселенная просуществовала бы недолго. Напомним, нашей целью является волновая функция и ее статистический смысл.

На выручку пришла гениальная догадка ученых: элементарные частицы одновременно и волны, и частицы (корпускулы). Их свойствами являются и масса с импульсом, и длина волны с частотой. Кроме того, благодаря наличию двух ранее несовместимых свойств элементарные частицы приобрели новые характеристики.

Одной из них является трудно представимый спин. В мире более мелких частиц, кварков, этих свойств настолько много, что им дают совершенно невероятные названия: аромат, цвет. Если читатель встретит их в книге по квантовой механике, пусть помнит: они совсем не то, чем кажутся на первый взгляд. Однако как же описать поведение такой системы, где все элементы обладают странным набором свойств? Ответ - в следующем разделе.

Уравнение Шредингера

Найти состояние, в котором находится элементарная частица (а в обобщенном виде и квантовая система), позволяет уравнение :

i ħ[(d/dt) Ψ]= Ĥ ψ.

Обозначения в этом соотношении следующие:

  • ħ=h/2 π, где h - постоянная Планка.
  • Ĥ - Гамильтониан, оператор полной энергии системы.

Изменяя координаты, в которых решается эта функция, и условия в соответствии с типом частицы и поля, в котором она находится, можно получить закон поведения рассматриваемой системы.

Понятия квантовой физики

Пусть читатель не обольщается кажущейся простотой использованных терминов. Такие слова и выражения, как «оператор», «полная энергия», «элементарная ячейка», - это физические термины. Их значения стоит уточнять отдельно, причем лучше использовать учебники. Далее мы дадим описание и вид волновой функции, но эта статья носит обзорный характер. Для более глубокого понимания этого понятия необходимо изучить математический аппарат на определенном уровне.

Волновая функция

Ее математическое выражение имеет вид

|ψ(t)> = ʃ Ψ(x, t)|x> dx.

Волновая функция электрона или любой другой элементарной частицы всегда описывается греческой буквой Ψ, поэтому иногда ее еще называют пси-функцией.

Для начала надо понять, что функция зависит от всех координат и времени. То есть Ψ(x, t) - это фактически Ψ(x 1 , x 2 … x n , t). Важное замечание, так как от координат зависит решение уравнения Шредингера.

Далее необходимо пояснить, что под |x> подразумевается базисный вектор выбранной системы координат. То есть в зависимости от того, что именно надо получить, импульс или вероятность |x> будет иметь вид | x 1 , x 2 , …, x n >. Очевидно, что n будет также зависеть от минимального векторного базиса выбранной системы. То есть в обычном трехмерном пространстве n=3. Для неискушенного читателя поясним, что все эти значки около показателя x - это не просто прихоть, а конкретное математическое действие. Понять его без сложнейших математических выкладок не удастся, поэтому мы искренне надеемся, что интересующиеся сами выяснят его смысл.

И наконец, необходимо объяснить, что Ψ(x, t)=.

Физическая сущность волновой функции

Несмотря на базовое значение этой величины, она сама не имеет в основании явления или понятия. Физический смысл волновой функции заключается в квадрате ее полного модуля. Формула выглядит так:

|Ψ (x 1 , x 2 , …, x n , t)| 2 = ω,

где ω имеет значение плотности вероятности. В случае дискретных спектров (а не непрерывных) эта величина приобретает значение просто вероятности.

Следствие физического смысла волновой функции

Такой физический смысл имеет далеко идущие последствия для всего квантового мира. Как становится понятно из значения величины ω, все состояния элементарных частиц приобретают вероятностный оттенок. Самый наглядный пример - это пространственное распределение электронных облаков на орбиталях вокруг атомного ядра.

Возьмем два вида гибридизации электронов в атомах с наиболее простыми формами облаков: s и p. Облака первого типа имеют форму шара. Но если читатель помнит из учебников по физике, эти электронные облака всегда изображаются как некое расплывчатое скопление точек, а не как гладкая сфера. Это означает, что на определенном расстоянии от ядра находится зона с наибольшей вероятностью встретить s-электрон. Однако чуть ближе и чуть дальше эта вероятность не нулевая, просто она меньше. При этом для p-электронов форма электронного облака изображается в виде несколько расплывчатой гантели. То есть существует достаточно сложная поверхность, на которой вероятность найти электрон самая высокая. Но и вблизи от этой «гантели» как дальше, так и ближе к ядру такая вероятность не равна нулю.

Нормировка волновой функции

Из последнего следует необходимость нормировать волновую функцию. Под нормировкой подразумевается такая «подгонка» некоторых параметров, при которой верно некоторое соотношение. Если рассматривать пространственные координаты, то вероятность найти данную частицу (электрон, например) в существующей Вселенной должна быть равна 1. Формула выгладит так:

ʃ V Ψ* Ψ dV=1.

Таким образом, выполняется закон сохранения энергии: если мы ищем конкретный электрон, он должен быть целиком в заданном пространстве. Иначе решать уравнение Шредингера просто не имеет смысла. И неважно, находится эта частица внутри звезды или в гигантском космическом войде, она должна где-то быть.

Чуть выше мы упоминали, что переменными, от которых зависит функция, могут быть и непространственные координаты. В таком случае нормировка проводится по всем параметрам, от которых функция зависит.

Мгновенное передвижение: прием или реальность?

В квантовой механике отделить математику от физического смысла невероятно сложно. Например, квант был введен Планком для удобства математического выражения одного из уравнений. Теперь принцип дискретности многих величин и понятий (энергии, момента импульса, поля) лежит в основе современного подхода к изучению микромира. У Ψ тоже есть такой парадокс. Согласно одному из решений уравнения Шредингера, возможно, что при измерении квантовое состояние системы изменяется мгновенно. Это явление обычно обозначается как редукция или коллапс волновой функции. Если такое возможно в реальности, квантовые системы способны перемещаться с бесконечной скоростью. Но ограничение скоростей для вещественных объектов нашей Вселенной непреложно: ничто не может двигаться быстрее света. Явление это зафиксировано ни разу не было, но и опровергнуть его теоретически пока не удалось. Со временем, возможно, этот парадокс разрешится: либо у человечества появится инструмент, который зафиксирует такое явление, либо найдется математическое ухищрение, которое докажет несостоятельность этого предположения. Есть и третий вариант: люди создадут такой феномен, но при этом Солнечная система свалится в искусственную черную дыру.

Волновая функция многочастичной системы (атома водорода)

Как мы утверждали на протяжении всей статьи, пси-функция описывает одну элементарную частицу. Но при ближайшем рассмотрении атом водорода похож на систему из всего лишь двух частиц (одного отрицательного электрона и одного положительного протона). Волновые функции атома водорода могут быть описаны как двухчастичные или оператором типа матрицы плотности. Эти матрицы не совсем точно являются продолжением пси-функции. Они скорее показывают соответствие вероятностей найти частицу в одном и другом состоянии. При этом важно помнить, что задача решена только для двух тел одновременно. Матрицы плотности применимы к парам частиц, но невозможны для более сложных систем, например при взаимодействии трех и более тел. В этом факте прослеживается невероятное подобие между наиболее «грубой» механикой и очень «тонкой» квантовой физикой. Поэтому не стоит думать, что раз существует квантовая механика, в обычной физике новых идей не может возникнуть. Интересное скрывается за любым поворотом математических манипуляций.

  • 5. Принцип Гюйгенса-Френеля. Зоны Френеля. Прямолинейное распространение света. Принцип гюйгенса-френеля
  • Метод зон френеля
  • 7.Дифракция в паралллных лучах.Дифракция от одной щели.Условия максимумов и минимумов
  • §5 Дифракционная решетка.
  • 8.Дифракционная решетка.Дифракционные спектры.Условия главных максимумов
  • 9.Пространственная решетка. Формула Вульфа Брегга.Исследования структуры кристаллов. Оптически однородная среда.
  • 15.Дисперсия света.Спектры.Электронная теория дисперсии света.
  • 2. Электронная теория дисперсии света
  • 13.Двойное лучепреломление.Построения Гюйгенса для одноосных кристаллов.
  • 14.Давление света.Опыты Лебедева.Классическое и квантовое объяснение давления..
  • 16.Тепловое излучение.Испускательная и поглощательная способности.Абсолютно черное тело.Законкиргофа.
  • 22 Формулы де Бройля. Опытное обоснование корпускулярно-волнового дуализма свойств вещества. Дифракция электронов.
  • 23 Излучение Вавилова-Черенкова.
  • 24 Волновая функция и уравнение Шредингера. Статический смысл волновой функции.
  • 25 Уравнение Шредингера для стационарных состояний. Условия, налагаемые на волновую функцию. Нормировка волновой функции.
  • 26 Частица в одномерной прямоугольной потенциальной яме бесконечной глубины. Квантование энергии. Принцип соответствия Бора.
  • 27 Туннельный эффект. Линейный гармонический осциллятор.
  • 28 Основное состояние атома водорода по Шредингеру. Энергия основного cостояния. Размеры атома водорода.
  • 29.Постулаты Бора. Теория атома водорода по Бору. Недостатки теории Бора.
  • 30.Спектр атома водорода и его объяснение. Спектральные закономерности Ридберга
  • 31.Атом водорода в квантовой механике. Главное, орбитальное и магнитное поле.
  • 32.Спин электрона. Спиновое квантовое число. Опыт Штерна и Герлаха.
  • 33.Поглощение свет. Спонтанное и вынужденное испускание излучения. Инверсная населенность. Усиливающая среда
  • 34.Оптические квантовые генераторы(лазеры). Метастабильный уровень. Особенности лазерного излучения.
  • §2 Трехуровневая схема
  • 35.Лазеры. Усиливающая среда. Порог генерации лазерного излучения.
  • 36 Цепная реакция деления.Критическиеразмеры.Коэффициент размножения нейтронов.Мгновенные и запаздывающие нейтроны.
  • 37 Принцип Паули.Распределение электронов в атоме по состояниям.Периодическая система Менделеева.
  • 40 Радиоактивность. Закон радиоактивного распада.Закономерностипроисхождения α- β-и γ-излучения атомных ядер.Правила смещения
  • 41 Ядерные реакции и законы сохранения.Эффективное поперечное сечение.
  • 46. Понятие о ядерной энергетике. Ядерные реакторы. Понятие трансурановых элементов
  • 24 Волновая функция и уравнение Шредингера. Статический смысл волновой функции.

    Уравнение учитывающее волновые и корпускулярные свойства частицы было получено Шредингером в 1926г.

    Шредингер сопоставил движение частицы на комплексную функцию координат и времени, которая называетсяфункцией, эта функция является решением уравнения Шредингера:

    Где Лапласа, который можно

    расписать: ;; U-потенциальная энергия частицы; Где- функция координат и времени.

    В квантовой физикенельзя точно предсказатькакие либо события, а можно говорить только о вероятностиданного события, вероятность событий и определяет .

    1) Вероятность нахождения микрочастицы в объеме dV в момент времени Т:

    Сопряженные функции.

    2) Плотность вероятностей нахождения частицы в единице объема:

    3) Волновая функция должна удовлетворять условию:

    где 3 интеграла расчитываются по всему объему, где может находится частица.

    Данное условие означает, что пробывание частицы – достоверное событие с вероятностью 1

    25 Уравнение Шредингера для стационарных состояний. Условия, налагаемые на волновую функцию. Нормировка волновой функции.

    Для некоторых практических задач потенциальная энергия частицы не зависит от времени. В этом случае волновую функцию можно представить как произведение

    т.к. зависит только от времени, то разделим наполучим:

    Левая часть равенства зависит только от времени, правая только от координат, это равенство справедливо только если обе части = const, такой константоя является полная энергия частицы Е.

    Рассмотрим правую часть данного равенства: , преобразуем:- уравнение для стационарного состояния.

    Рассмотрим левую часть уравнения Шредингера: ;;

    разделим переменные , проинтегрируем полученное уравнение:

    воспользуясь математическими преобразованиями:

    В этом случае вероятность нахождения частицы можно определить:

    Либо после преобразований:

    –данная вероятность не зависит от времени, данное уравнение, характеризующее микрочастицы, получило название – стационарное состояние частицы.

    Обычно требуют, чтобы волновая функция была определена и непрерывна (бесконечное число раз дифференцируема) во всем пространстве, а также чтобы она была однозначной. Допустимым является один вид неоднозначности волновых функций -неоднозначность знака «+/».

    Волновая функция по своему смыслу должна удовлетворять так называемому условию нормировки, например, в координатном представлении имеющему вид:

    Это условие выражает тот факт, что вероятность обнаружить частицу с данной волновой функцией где-либо во всём пространстве равна единице. В общем случае интегрирование должно производиться по всем переменным, от которых зависит волновая функция в данном представлении.

    26 Частица в одномерной прямоугольной потенциальной яме бесконечной глубины. Квантование энергии. Принцип соответствия Бора.

    Рассмотрим движение микрочастицы вдоль оси х в потенциальном поле.

    Такое потенциальное поле соответствует бесконечно глубокой потенциальной яме с плоским дном. Примером движения в потенциальной яме является движение электрона в металле. Но для выхода электрона из металла необходимо совершить работу, что и соответствует потенциальной энергии в уравнении Шредингера.

    При таком условии частица не проникает за пределы "ямы", т.е.

    y(0)= y(l)=0 В пределах ямы (0сведется к уравнению

    илиданное уравнение является диференциальным уравнением и согласно математике его решение является, гдеможно определить из граничных условий.

    n-главное квантовое число n=1,2,3…

    Анализ этого уравнения показывает, что в потенциальной яме энергия не может быть дискретной величиной.

    состояние с min энергией называется основным, все остальные возбужденные.

    Рассмотрим т.к. потенциальная яма одномерна, то можно записать, что, в местоподставим в выражение и получим. По скольку одномерная потенциальная яма с плоским дном, то

    Графически изобразим

    Из рисунка видно, что вероятность пребывания микрочастицы в разных местах отрезка неодинакова, с увеличением n вероятность нахождения частицы увеличивается

    Квантование энергии является одним из ключевых принципов, необходимых для понимания структурной организации материи, т.е. существования стабильных, повторяющихся в своих свойствах, молекул, атомов и более мелких структурных единиц, из которых состоит как вещество, так и излучение.

    Принцип квантования энергии гласит, что любая система взаимодействующих частиц, способная образовывать стабильное состояние - будь то кусок твердого тела, молекула, атом или атомное ядро, - может сделать это только при определенных значениях энергии.

    В квантовой механике принципом соответствия называется утверждение о том, что поведение квантовомеханической системы стремится к классической физике в пределе больших квантовых чисел. Этот принцип ввёл Нильс Бор в 1923 году.

    Правила квантовой механики очень успешно применяются в описании микроскопических объектов, типа атомов и элементарных частиц. С другой стороны, эксперименты показывают, что разнообразные макроскопические системы (пружина, конденсатор и т.д) можно достаточно точно описать в соответствии с классическими теориями, используя классическую механику и классическую электродинамику (хотя существуют макроскопические системы, демонстрирующие квантовое поведение, например, сверхтекучий жидкий гелий или сверхпроводники). Однако, весьма разумно полагать, что окончательные законы физики должны быть независимыми от размера описываемых физических объектов. Это предпосылка для принципа соответствия Бора, который утверждает, что классическая физика должна появиться как приближение к квантовой физике, поскольку системы становятся большими.

    Условия, при которых квантовая и классическая механики совпадают, называются классическим пределом. Бор предложил грубый критерий для классического предела: переход происходит, когда квантовые числа, описывающие систему являются большими, означая или возбуждение системы до больших квантовых чисел, или то, что система описана большим набором квантовых чисел, или оба случая. Более современная формулировка говорит, что классическое приближение справедливо при больших значениях действия

    Вывод формулы для ядра в случае свободной частицы, приведенный в задаче 4.11, неудовлетворителен по двум причинам, которые связаны между собой. Во-первых, понятие суммы по различным состояниям и, использованной в выражении (4.62), не удовлетворительно, если состояния принадлежат непрерывному спектру, что имеет место в случае свободной частицы. Во-вторых, волновые функции для свободных частиц (плоские волны], хотя и являются ортогональными, однако не могут быть нормированы, так как

    и не выполнено условие равенства (4.47), которое применялось при выводе выражения (4.62). Оба эти пункта можно одновременно исправить чисто математическим путем. Возвратимся к разложению произвольной функции по собственным функциям :

    (4.65)

    и учтем, что все или часть состояний могут принадлежать к непрерывному спектру, так что часть суммы по следует заменить интегралом. Можно математически строго получить корректное выражение для ядра , аналогичное выражению (4.62), но применимое также и в том случае, когда состояния находятся в непрерывной части спектра.

    Нормировка на конечный объем . Многие физики предпочитают другой, менее строгий подход. То, что они делают, заключается в некоторой модификации исходной задачи, причем результаты (в их физическом смысле) изменятся несущественно, однако все состояния оказываются дискретными по энергии и поэтому все разложения принимают вид простых сумм. В нашем примере этого можно достичь следующим образом. Мы рассматриваем амплитуду вероятности перехода из точки в точку за конечное время. Если эти две точки находятся на некотором конечном расстоянии друг от друга и разделяющий их промежуток времени не слишком велик, то в амплитуде заведомо не будет сколько-нибудь заметных различий от того, является ли электрон действительно свободным или предполагается помещенным в какой-то очень большой ящик объемом со стенками, расположенными очень далеко от точек и . Если бы частица могла достичь стенок и вернуться назад за время , это могло бы сказаться на амплитуде; но если стенки достаточно удалены, то они никак не повлияют на амплитуду.

    Конечно, это предположение может стать неверным при некотором специальном выборе стенок; например, если точка будет находиться в фокусе волн, вышедших из точки и отраженных от стенок. Иногда по инерции допускают ошибку, заменяя систему, находящуюся в свободном пространстве, системой, расположенной в центре большой сферы. Тот факт, что система остается точно в центре идеальной сферы, может давать некий эффект (подобно появлению светлого пятна в центре тени от совершенно круглого предмета), который не исчезает, даже если радиус сферы стремится к бесконечности. Влияние поверхности было бы пренебрежимо малым в случае стенок другой формы или для системы, смещенной относительно центра этой сферы.

    Рассмотрим сначала одномерный случай. Волновые функции, зависящие от координаты, имеют вид , где принимает оба знака. Какой вид будут иметь функции , если область изменения ограничить произвольным интервалом от до ? Ответ зависит от граничных условий, определяющих значения в точках и . Простейшими с физической точки зрения являются граничные условия в случае стенок, создающих для частицы сильный отталкивающий потенциал, ограничивая тем самым область ее движения (т. е. при идеальном отражении). В этом случае в точках и . Решениями волнового уравнения

    , (4.66)

    соответствующими энергии в области , будут экспоненты и или любая их линейная комбинация. Как , так и не удовлетворяют выбранным граничным условиям, однако при (где - целое число) требуемыми свойствами обладает в случае нечетного их полусумма (т. е. ), а в случае четного - деленная на их полуразность (т. е. ), как это схематически изображено на фиг. 4.1. Таким образом, волновые функции состояний имеют вид синусов и косинусов, а соответствующие им энергетические уровни дискретны и не составляют континуума.

    Фиг. 4.1. Вид одномерных волновых функций, нормированных в ящике.

    Показаны первые четыре из них. Энергии соответствующих уровней равны , , и . Абсолютное значение энергии, которое зависит от размеров нашего фиктивного ящика, несущественно для большинства реальных задач. То, что действительно имеет значение, - это соотношение между энергиями различных состояний.

    Если решения записать в виде и , то они будут нормированы, поскольку

    . (4.67)

    Сумма по всем состояниям является суммой по . Если мы рассмотрим, например, синусоидальные волновые функции (т. е. четные значения ), то при небольших значениях и очень большой величине (стенки далеки от интересующей нас точки) соседние по номерам функции различаются весьма незначительно. Их разность

    (4.68)

    приблизительно пропорциональна малой величине . Поэтому сумму по можно заменить интегралом по . Так как допустимые значения расположены последовательно с интервалом , в промежутке расположено состояний. Все это применимо также и к состояниям с косинусоидальной волновой функцией, поэтому во всех наших формулах мы можем заменить суммы интегралами

    , (4.69)

    не забывая, что в конце нужно сложить результаты для обоих типов волновых функций, а именно и .

    Часто бывает неудобным использовать в качестве волновых функций и , и более предпочтительными являются их линейные комбинации

    и .

    Однако, вводя ограниченный объем , мы вынуждены использовать синусы и косинусы, а не их линейные комбинации, потому что при заданном значении решением будет лишь одна из этих функций, а не обе сразу. Но если пренебречь малыми погрешностями, являющимися следствием таких небольших различий в значениях , то мы можем рассчитывать на получение правильных результатов и с этими новыми линейными комбинациями. После нормировки они принимают вид и . Поскольку волну можно рассматривать как волну , но с отрицательным значением , наша новая процедура, включая объединение двух типов волновых функций, сводится к следующему практическому правилу: взять волновые функции свободной частицы , нормировать их на отрезке длины изменения переменной (т. е. положить ) и заменить суммы по состояниям интегралами по переменной таким образом, чтобы число состояний со значениями , заключенных в интервале , было равно , а само изменялось от до .

    Периодические граничные условия . Иногда подобный экскурс к косинусам и синусам, а затем обратно к экспонентам удается обойти с помощью следующего довода. Так как введение стенки является искусственным приемом, то ее конкретное положение и соответствующее граничное условие не должны иметь какого-нибудь физического значения, если только стенка достаточно удалена. Поэтому вместо физически простых условий мы можем использовать другие, решениями для которых сразу окажутся экспоненты . Таковыми условиями являются

    (4.70)

    . (4.71)

    Их называют периодическими граничными условиями, потому что требование периодичности с периодом во всем пространстве привело бы к тем же самым условиям. Легко проверить, что функции являются нормированными на отрезке решениями при условии, что , где - любое целое (положительное или отрицательное) число или нуль. Отсюда непосредственно следует правило, сформулированное выше.

    Что происходит в случае трех измерений, мы можем понять, если рассмотрим прямоугольный ящик со сторонами, равными , , . Используем периодические граничные условия, т. е. потребуем, чтобы значения волновой функции и ее первой производной на одной грани ящика были симметрично равны их значениям на противоположной грани. Нормированная волновая функция свободной частицы будет представлять собой произведение

    , (4.72)

    где - объем ящика, и допустимыми значениями будут , и (, , - целые числа). Кроме того, число решений со значениями , , , лежащими соответственно в интервалах , , , равно произведению, нужно ввести добавочный множитель . [Выражение (4.64) содержит произведение двух волновых функций.] Во-вторых, символ суммы надо заменить на интеграл . Все это оправдывает то, что было проделано в § 2 гл. 4, а также результаты вывода в задаче 4.11.

    Следует отметить, что множители сокращаются, как это и должно быть, так как при ядро не должно зависеть от размера ящика.

    Некоторые замечания о математической строгости . У читателя при виде того, как в конце вычислений объем сокращается, может возникнуть одна из двух реакций: либо удовлетворение от того, что он сокращается, как это и должно быть, поскольку стенки ни на что не влияют, либо недоумение, почему все делается так нестрого, «грязно» и запутанно, с помощью стенок, которые не имеют никакого реального смысла, и т. д., когда все это можно было бы выполнить намного изящнее и математически строже без всяких стенок и тому подобных вещей. Тип такой реакции зависит от того, мыслите ли вы физически или же математически. По поводу математической строгости в физике между математиками и физиками возникает много недоразумений, поэтому, быть может, уместно дать оценку каждому методу: рассуждениям с ящиком и математически строгому рассмотрению.

    Здесь, конечно, содержится более тривиальный вопрос: какой метод для нас более привычен, т. е. требует минимума новых знаний? Прежде чем подсчитывать число различных состояний в ящике, большинство физиков думали прежде всего именно об этом.

    Наряду с этим математически строгое решение может быть нестрогим с физической точки зрения; иначе говоря, возможно, что ящик существует на самом деле. Им может быть не обязательно прямоугольный ящик, ведь не часто оказывается, что эксперименты ставят под звездами; чаще их проводят в комнате. Хотя физически представляется вполне разумным, что стенки не должны влиять на опыт, тем не менее такую постановку задачи надо рассматривать как идеализацию. Удаление стенок на бесконечность ничем не лучше, чем замена их достаточно далекими идеальными зеркалами. В первом случае математическая строгость также нарушается, поскольку реальные стенки находятся не на бесконечности.

    Подход с привлечением удаленных стенок справедлив и строг настолько же, насколько оправдан. Он обладает несколькими преимуществами. Например, когда объем в заключительных формулах сокращается, мы видим, что несуществен по крайней мере один из аспектов идеализации - насколько стенки удалены. Этот результат интуитивно еще более убеждает нас в том, что истинное расположение реальной окружающей обстановки может быть несущественным. Наконец, полученная формула очень полезна, когда мы действительно имеем случай конечных размеров. Например, в гл. 8 мы воспользуемся ею, чтобы подсчитать число различных звуковых волн в большом блоке вещества прямоугольной формы.

    С другой стороны, преимуществом математически строгого подхода является упразднение в сущности ненужной детали, которая не входит в результат. Хотя введение стенок позволяет кое-что узнать о том, почему же они все-таки ни на что но влияют, тем не менее можно убедиться в справедливости этого, не вникая при этом в детали.

    Задача о нормировке волновых функций представляет собой довольно частный пример, но он иллюстрирует главное. Физик не может понять осторожности, проявляемой математиком при решении идеализированной физической задачи. Он знает, что реальная задача намного сложнее. Она уже упрощена с помощью интуиции, которая отбрасывает несущественное и аппроксимирует то, что остается.