Площадь шестиугольника через радиус вписанной окружности. Как находится площадь шестиугольника формула. Периметр шестиугольника: онлайн калькулятор, формулы, примеры решений. Примеры из реальной жизни. Определение и построение

Тему многоугольников проходят в школьной программе, но не уделяют ей достаточного внимания. А между тем она интересна, и особенно это касается правильного шестиугольника или гексагона - ведь эту форму имеют многие природные объекты. К ним относятся пчелиные соты и многое другое. Эта форма очень хорошо применяется на практике.

Определение и построение

Правильным шестиугольником называется плоскостная фигура, имеющая шесть равных по длине сторон и столько же равных углов.

Если вспомнить формулу суммы углов многоугольника

то получается, что в этой фигуре она равна 720°. Ну а поскольку все углы фигуры равны, нетрудно посчитать, что каждый из них равен 120°.

Начертить шестиугольник очень просто, для этого достаточно циркуля и линейки.

Пошаговая инструкция будет выглядеть так:

При желании можно обойтись и без линии, начертив пять равных по радиусу окружностей.

Полученная таким образом фигура будет правильным шестиугольником, и это можно доказать ниже.

Свойства простые и интересные

Чтобы понять свойства правильного шестиугольника, его имеет смысл разбить на шесть треугольников:

Это поможет в дальнейшем нагляднее отобразить его свойства, главные из которых:

  1. диаметр описанной окружности;
  2. диаметр вписанной окружности;
  3. площадь;
  4. периметр.

Описанная окружность и возможность построения

Вокруг гексагона можно описать окружность, и притом только одну. Поскольку фигура эта правильная, то можно поступить довольно просто: от двух соседних углов провести внутрь биссектрисы. Они пересекутся в точке О, и образуют вместе со стороной между ними треугольник.

Углы между стороной гексагона и биссектрисами будут по 60°, поэтому можно определенно сказать, что треугольник, к примеру, АОВ - равнобедренный. А поскольку третий угол тоже будет равен 60°, то он еще и равносторонний. Отсюда следует, что отрезки ОА и ОВ равны, значит, могут служить радиусом окружности.

После этого можно перейти к следующей стороне, и из угла при точке С тоже вывести биссектрису. Получится очередной равносторонний треугольник, причем сторона АВ будет общей сразу для двух, а ОС - очередным радиусом, через который идет та же окружность. Всего таких треугольников получится шесть, и у них будет общая вершина в точке О. Получается, что описать окружность будет можно, и она всего одна, а ее радиус равен стороне гексагона:

Именно поэтому и возможно построение этой фигуры с помощью циркуля и линейки.

Ну а площадь этой окружности будет стандартная:

Вписанная окружность

Центр описанной окружности совпадет с центром вписанной. Чтобы в этом убедиться, можно провести из точки О перпендикуляры к сторонам шестиугольника. Они будут являться высотами тех треугольников, из которых составлен гексагон. А в равнобедренном треугольнике высота является медианой по отношению к стороне, на которую она опирается. Таким образом, эта высота не что иное, как серединный перпендикуляр, являющийся радиусом вписанной окружности.

Высота равностороннего треугольника вычисляется просто:

h²=а²-(а/2)²= а²3/4, h=а(√3)/2

А поскольку R=a и r=h, то получается, что

r=R(√3)/2 .

Таким образом, вписанная окружность проходит через центры сторон правильного шестиугольника.

Ее площадь будет составлять:

S=3πa²/4 ,

то есть три четверти от описанной.

Периметр и площадь

С периметром все ясно, это сумма длин сторон:

P=6а , или P=6R

А вот площадь будет равна сумме всех шести треугольников, на которые можно разбить гексагон. Поскольку площадь треугольника вычисляется как половина произведения основания на высоту, то:

S=6(а/2)(а(√3)/2)= 6а²(√3)/4=3а²(√3)/2 или

S=3R²(√3)/2

Желающим вычислять эту площадь через радиус вписанной окружности можно сделать и так:

S=3(2r/√3)²(√3)/2=r²(2√3)

Занимательные построения

В гексагон можно вписать треугольник, стороны которого будут соединять вершины через одну:

Всего их получится два, и их наложение друг на друга даст звезду Давида. Каждый из этих треугольников - равносторонний. В этом нетрудно убедиться. Если посмотреть на сторону АС, то она принадлежит сразу двум треугольникам - ВАС и АЕС. Если в первом из них АВ=ВС, а угол между ними 120°, то каждый из оставшихся будет 30°. Отсюда можно сделать закономерные выводы:

  1. Высота АВС из вершины В будет равна половине стороны шестиугольника, поскольку sin30°=1/2. Желающим убедиться в этом можно посоветовать пересчитать по теореме Пифагора, она здесь подходит как нельзя лучше.
  2. Сторона АС будет равна двум радиусам вписанной окружности, что опять-таки вычисляется по той же теореме. То есть АС=2(a(√3)/2)=а(√3).
  3. Треугольники АВС, СДЕ и АЕF равны по двум сторонам и углу между ними, и отсюда вытекает равенство сторон АС, СЕ и ЕА.

Пересекаясь друг с другом, треугольники образуют новый гексагон, и он тоже правильный. Доказывается это просто:

Таким образом, фигура отвечает признакам правильного шестиугольника - у нее шесть равных сторон и углов. Из равенства треугольников при вершинах легко вывести длину стороны нового гексагона:

d=а(√3)/3

Она же будет радиусом описанной вокруг него окружности. Радиус вписанной будет вдвое меньше стороны большого шестиугольника, что было доказано при рассмотрении треугольника АВС. Его высота составляет как раз половину стороны, следовательно, вторая половина - это радиус вписанной в маленький гексагон окружности:

r₂=а/2

S=(3(√3)/2)(а(√3)/3)²=а(√3)/2

Получается, что площадь гексагона внутри звезды Давида в три раза меньше, чем у большого, в который вписана звезда.

От теории к практике

Свойства шестиугольника очень активно используются как в природе, так и в различных областях деятельности человека. В первую очередь это касается болтов и гаек - шляпки первых и вторые представляют собой ничто иное, как правильный шестигранник, если не брать в расчет фаски. Размер гаечных ключей соответствует диаметру вписанной окружности - то есть расстоянию между противоположными гранями.

Нашла свое применение и гексагональная плитка. Она распространена куда меньше четырехугольной, но класть ее удобнее: в одной точке смыкаются три плитки, а не четыре. Композиции могут получаться очень интересные:

Выпускается и бетонная плитка для мощения.

Распространенность гексагона в природе объясняется просто. Таким образом, проще всего плотно уместить круги и шары на плоскости, если у них одинаковый диаметр. Из-за этого у пчелиных сот такая форма.

Сторон. Р = а1+а2+а3+а4+а5+а6,где P – периметр шестиугольника , а а1, а2 … а6 – длины его сторон.Единицы измерения каждой из сторон приведите к одному виду – в этом случае достаточно будет сложить только числовые значения длин сторон. Единица измерения периметра шестиугольника будет совпадать с единицей измерения сторон.

Примеры из реальной жизни

Геометрия - это отрасль математики, которая занимается изучением форм различных измерений и анализом их свойств. В этом исследовании форм многоугольное семейство является одной из наиболее часто изучаемых фигур. Многоугольники закрыты 2-мерными плоскими объектами, которые имеют прямые стороны. Многоугольник, состоящий из 6 сторон и 6 углов, известен как шестиугольник. Любая замкнутая плоская двумерная структура с 6 прямыми сторонами будет называться шестиугольником. Слово «шестнадцатеричный» означает 6, а «угол» относится к углу.

Пример.Имеется шестиугольник с длинами сторон 1 см, 2 мм, 3 мм, 4 мм, 5 мм, 6 мм. Требуется найти его периметр.Решение.1. Единица измерения первой стороны (см) отличается от единиц измерения длин остальных сторон (мм). Поэтому, переведите: 1 см = 10 мм.2. 10+2+3+4+5+6=30 (мм).

Если шестиугольник правильный, то чтобы найти его периметр, умножьте длину его стороны на шесть:Р = а * 6,где а – длина стороны правильного шестиугольника .Пример.Найти периметр правильного шестиугольника с длиной стороны равной 10 см.Решение: 10 * 6 = 60 (см).

Как показано на диаграмме ниже, шестиугольник имеет 6 сторон или края, 6 углов и 6 вершин. Площадь шестиугольника - это пространство, занимаемое в границах шестиугольника. Используя измерения стороны и угла, мы можем найти область шестиугольника. Шестиугольники можно наблюдать в разных формах в нашей красивой природе . На приведенном ниже рисунке показана заштрихованная часть внутри границ шестиугольника, которая называется зоной шестиугольника.

Этот тип шестиугольника также не имеет 6 равных углов. Если вершины нерегулярного шестиугольника направлены наружу, то он известен как выпуклый нерегулярный шестиугольник, а если вершины шестиугольника направлены внутрь, то он известен как вогнутый нерегулярный шестиугольник, как показано на рисунке ниже. Поскольку измерения сторон и углов неравны, поэтому мы должны использовать разные стратегии, чтобы найти область нерегулярного шестиугольника. Метод вычисления площади правильного шестиугольника отличается от метода расчета площади нерегулярного шестиугольника.

Правильный шестиугольник обладает уникальным свойством: радиус описанной вокруг такого шестиугольника окружности равен длине его стороны. Поэтому, если известен радиус описанной окружности, до воспользуйтесь формулой:P = R * 6,где R – радиус описанной окружности.

Область регулярного шестиугольника: правильный шестиугольник имеет все 6 сторон и 6 углов, равных по мере. Когда тянутся диагонали, проходящие через центр шестиугольника, образуются 6 равносторонних треугольников одинакового размера. Если рассчитывается площадь одного равностороннего треугольника, то мы можем легко вычислить площадь данного правильного шестиугольника. Следовательно, все его стороны также равны.

Теперь правильный шестиугольник состоит из 6 таких конгруэнтных равносторонних треугольников. Пример 1: Какова площадь правильного шестиугольника, длина которого составляет 8 см? Пример 2: Если площадь правильного шестиугольника составляет √12 квадратных футов, то какова длина стороны шестиугольника?

Пример.Рассчитать периметр правильного шестиугольника , писанного в окружность диаметром 20 см.Решение. Радиус описанной окружности будет равен: 20/2=10 (см).Следовательно, периметр шестиугольника : 10 * 6 = 60 (см).

Пример: найдите область нерегулярного шестиугольника, показанного на рисунке ниже. Шестиугольные сетки используются в некоторых играх, но они не так просты или распространены как квадратные сетки. Многие части этой страницы являются интерактивными; выбор типа сетки будет обновлять диаграммы, код и текст для соответствия. Образцы кода на этой странице написаны в псевдокоде; они предназначены для легкого чтения и понимания, чтобы вы могли написать свою собственную реализацию.

Шестиугольники - это шестигранные многоугольники. Обычные шестиугольники имеют все стороны одинаковой длины. Типичные ориентации для гексарифмических сеток являются горизонтальными и вертикальными. Каждое ребро разделяется двумя шестиугольниками. Каждый угол разделяется тремя шестиугольниками. В моей статье о частях сетки. В правильном шестиугольнике внутренние углы 120 °. Есть шесть «клиньев», каждый из которых равносторонний треугольник с углами 60 ° внутри.

Если по условиям задачи задан радиус вписанной окружности, то примените формулу:P = 4 * √3 * r,где r – радиус вписанной в правильный шестиугольник окружности.

Если известна площадь правильного шестиугольника , то для расчета периметра используйте следующее соотношение:S = 3/2 * √3 * а²,где S – площадь правильного шестиугольника . Отсюда можно найти а = √(2/3 * S / √3), следовательно:Р = 6 * а = 6 * √(2/3 * S / √3) = √(24 * S / √3) = √(8 * √3 * S) = 2√(2S√3).

Учитывая гексагон, который 6 гексов соседствуют с ним? Как и следовало ожидать, ответ прост с координатами куба, все еще довольно простой с осевыми координатами и немного сложнее с координатами смещения. Мы могли бы также захотеть рассчитать 6 диагональных гексов.

Учитывая местоположение и расстояние, что видно из этого места, а не заблокировано препятствиями? Самый простой способ сделать это - нарисовать линию для каждого гексагонального диапазона. Если линия не ударяет по стенам, вы можете увидеть гекс. Мышь над шестнадцатеричным, чтобы увидеть, как линия тянется к этому гексу, и к каким стенам он попадает.

По определению из планиметрии правильным многоугольником называется выпуклый многоугольник, у которого стороны равны между собой и углы так же равны между собой. Правильный шестиугольник является правильным многоугольником, с числом сторон равным шести. Существует несколько формул для расчета площади правильного многоугольника.

  • Выпуклый семиугольник - это тот, у которого нет тупых внутренних углов.
  • Вогнутая спираль - одна с тупым внутренним углом.
Формулы для расчета площади и периметра семиугольника варьируются в зависимости от того, является ли он регулярным или нерегулярным семиугольником.

где а – длина стороны правильного шестиугольника.

Пример.
Найти периметр правильного шестиугольника с длиной стороны равной 10 см.
Решение: 10 * 6 = 60 (см).

Правильный шестиугольник обладает уникальным свойством: радиус описанной вокруг такого шестиугольника окружности равен длине его стороны. Поэтому, если известен радиус описанной окружности, до воспользуйтесь формулой:

где R – радиус описанной окружности.

Пример.
Рассчитать периметр правильного шестиугольника, писанного в окружность диаметром 20 см.
Решение.
Радиус описанной окружности будет равен: 20/2=10 (см).
Следовательно, периметр шестиугольника: 10 * 6 = 60 (см). Если по условиям задачи задан радиус вписанной окружности, то примените формулу:

где r – радиус вписанной в правильный шестиугольник окружности.

Если известна площадь правильного шестиугольника, то для расчета периметра используйте следующее соотношение:

S = 3/2 * v3 * а?,

где S – площадь правильного шестиугольника.
Отсюда можно найти а = v(2/3 * S / v3), следовательно:

Р = 6 * а = 6 * v(2/3 * S / v3) = v(24 * S / v3) = v(8 * v3 * S) = 2v(2Sv3).

Как просто

Есть ли поблизости от Вас карандаш? Взгляните-ка на его сечение - оно представляет собой правильный шестиугольник или, как его еще называют, гексагон. Такую форму имеет также сечение гайки, поле гексагональных шахмат, некоторых сложных молекул углерода (к примеру, графит), снежинка, пчелиные соты и другие объекты. Гигантский правильный шестиугольник был недавно обнаружен в Не кажется ли странным столь частое использование природой для своих творений конструкций именно этой формы? Давайте рассмотрим поподробнее.

Правильный шестиугольник представляет собой многоугольник с шестью одинаковыми сторонами и равными углами. Из школьного курса нам известно, что он обладает следующими свойствами:

  • Длина его сторон соответствует радиусу описанной окружности. Из всех это свойство имеет лишь правильный шестиугольник.
  • Углы равны между собой, и величина каждого составляет 120°.
  • Периметр гексагона можно найти по формуле Р=6*R, если известен радиус описанной вокруг него окружности, или Р=4*√(3)*r, если окружность в него вписана. R и r - радиусы описанной и вписанной окружности.
  • Площадь, которую занимает правильный шестиугольник, определяется следующим образом: S=(3*√(3)*R 2)/2. Если радиус неизвестен, вместо него подставляем длину одной из сторон - как известно, она соответствует длине радиуса описанной окружности.

У правильного шестиугольника есть одна интересная особенность, благодаря которой он получил в природе такое широкое распространение, - он способен заполнить любую поверхность плоскости без наложений и пробелов. Существует даже так называемая лемма Пала, согласно которой правильный гексагон, сторона которого равна 1/√(3), представляет собой универсальную покрышку, то есть может покрыть любое множество с диаметром в одну единицу.

Теперь рассмотрим построение правильного шестиугольника. Есть несколько способов, самый простой из которых предполагает использование циркуля, карандаша и линейки. Вначале рисуем циркулем произвольную окружность, затем в произвольном месте на этой окружности делаем точку. Не меняя раствора циркуля, ставим острие в эту точку, отмечаем на окружности следующую насечку, продолжаем так до тех пор, пока не получим все 6 точек. Теперь остается лишь соединить их между собой прямыми отрезками, и получится искомая фигура.

На практике бывают случаи, когда требуется нарисовать шестиугольник большого размера. Например, на двухуровневом гипсокартонном потолке, вокруг места крепления центральной люстры, нужно установить на нижнем уровне шесть небольших светильников. Циркуль таких размеров найти будет очень и очень сложно. Как поступить в этом случае? Как вообще нарисовать большую окружность? Очень просто. Нужно взять крепкую нить нужной длины и обвязать один из ее концов напротив карандаша. Теперь осталось лишь найти помощника, который бы прижал к потолку в нужной точке второй конец нити. Конечно, в этом случае возможны незначительные погрешности, но вряд ли они вообще будут заметны постороннему человеку.

Самая известная фигура, у которой больше четырех углов - это правильный шестиугольник. В геометрии он часто используется в задачах. А в жизни именно такой вид имеют соты на срезе.

Чем он отличается от неправильного?

Во-первых, шестиугольником является фигура с 6 вершинами. Во-вторых, он может быть выпуклым или вогнутым. Первый отличается тем, что четыре вершины лежат по одну сторону от прямой, проведенной через две другие.

В-третьих, правильный шестиугольник характеризуется тем, что все его стороны равны. Причем каждый угол фигуры тоже имеет одинаковое значение. Чтобы определить сумму всех его углов, потребуется воспользоваться формулой: 180º * (n — 2). Здесь n — число вершин фигуры, то есть 6. Простой расчет дает значение в 720º. То есть каждый угол равен 120 градусам.

В повседневной деятельности правильный шестиугольник встречается в снежинке и гайке. Химики видят ее даже в молекуле бензола.

Какие свойства требуется знать при решении задач?

К тому, что указано выше, следует добавить:

  • диагонали фигуры, проведенные через центр, делят ее на шесть треугольников, которые являются равносторонними;
  • сторона правильного шестиугольника имеет значение, которое совпадает с радиусом описанной около него окружности;
  • используя такую фигуру, есть возможность заполнить плоскость, причем между ними не получится пропусков и не будет наложений.

Введенные обозначения

Традиционно сторона правильной геометрической фигуры обозначается латинской буквой «а». Для решения задач требуются еще площадь и периметр, это S и P соответственно. В правильный шестиугольник бывает вписана окружность или описана около него. Тогда вводятся значения для их радиусов. Обозначаются они соответственно буквами r и R.

В некоторых формулах фигурируют внутренний угол, полупериметр и апофема (являющаяся перпендикуляром к середине любой стороны из центра многоугольника). Для них используются буквы: α, р, m.

Формулы, которые описывают фигуру

Для расчета радиуса вписанной окружности потребуется такая: r = (a * √3) / 2, причем r = m. То есть такая же формула будет и для апофемы.

Поскольку периметр шестиугольника — это сумма всех сторон, то он определится так: P = 6 * a. С учетом того, что сторона равна радиусу описанной окружности, для периметра существует такая формула правильного шестиугольника: P = 6 * R. Из той, что приведена для радиуса вписанной окружности, выводится зависимость между а и r. Тогда формула принимает такой вид: Р = 4 r * √3.

Для площади правильного шестиугольника может пригодиться такая: S = p * r = (a 2 * 3 √3) / 2.

Задачи

№ 1. Условие. Имеется правильная шестиугольная призма, каждое ребро которой равно 4 см. В нее вписан цилиндр, объем которого необходимо узнать.

Решение. Объем цилиндра определяется как произведение площади основания на высоту. Последняя совпадает с ребром призмы. А она равна стороне правильного шестиугольника. То есть высота цилиндра - тоже 4 см.

Чтобы узнать площадь его основания, потребуется вычислить радиус вписанной в шестиугольник окружности. Формула для этого указана выше. Значит, r = 2√3 (см). Тогда площадь круга: S = π * r 2 = 3,14 * (2√3) 2 = 37,68 (см 2).

Ответ . V = 150,72 см 3 .

№ 2. Условие. Вычислить радиус окружности, которая вписана в правильный шестиугольник. Известно, что его сторона равна √3 см. Чему будет равен его периметр?

Решение. Эта задача требует использования двух из указанных формул. Причем их необходимо применять, даже не видоизменяя, просто подставить значение стороны и вычислить.

Таким образом, радиус вписанной окружности получается равным 1,5 см. Для периметра оказывается верным такое значение: 6√3 см.

Ответ. r = 1,5 см, Р = 6√3 см.

№ 3. Условие. Радиус описанной окружности равен 6 см. Какое значение в этом случае будет у стороны правильного шестиугольника?

Решение. Из формулы для радиуса вписанной в шестиугольник окружности легко получается та, по которой нужно вычислять сторону. Ясно, что радиус умножается на два и делится на корень из трех. Необходимо избавиться от иррациональности в знаменателе. Поэтому результат действий принимает такой вид: (12 √3) / (√3 * √3), то есть 4√3.

Ответ. а = 4√3 см.

Шестиугольник или гексагон - это правильный многоугольник, у которого стороны равны между собой, а каждый угол равен строго 120 градусов. Гексагон иногда встречается в человеческой повседневности, поэтому вам может понадобиться вычислить его площадь не только в школьных задачах, но и в реальной жизни.

Выпуклый шестиугольник

Гескагон - это правильный выпуклый многоугольник, соответственно, все его углы равны, все стороны равны, а если провести отрезок через две соседние вершины, то вся фигура окажется по одну сторону от этого отрезка. Как и в любой правильный n-угольник, вокруг гексагона можно описать окружность или вписать ее вовнутрь. Главная особенность шестиугольника заключается в том, что длина радиуса описанной окружности совпадает с длиной стороны многоугольника. Благодаря этому свойству можно легко найти площадь гексагона по формуле:

S = 2,59 R 2 = 2,59 a 2 .

Кроме того, радиус вписанной окружности соотносится со стороной фигуры как:

Из этого следует, что вычислить площадь шестиугольника можно, оперируя одной из трех переменных на выбор.

Гексаграмма

Звездчатый правильный шестиугольник предстает перед нами в виде шестиконечной звезды. Такая фигура образуется путем наложения друг на друга двух равносторонних треугольников. Самой известной реальной гексаграммой является Звезда Давида - символ еврейского народа.

Шестиугольные числа

В теории чисел существуют фигурные числа, связанные с определенными геометрическими фигурами. Наибольшее применение находят треугольные и квадратные, а также тетраэдрические и пирамидальные числа, используя которые легко выкладывать геометрические фигуры при помощи реальных предметов. Например, пирамидальные числа подскажут вам, как сложить пушечные ядра в устойчивую пирамиду. Существуют также и шестиугольные числа, которые определяют число точек, необходимое для построения гексагона.

Шестиугольник в реальности

Гексагоны часто встречаются в реальной жизни. К примеру, сечения гаек или карандашей имеют шестиугольную форму, благодаря чему обеспечивается удобный обхват предмета. Шестиугольник - это эффективная геометрическая фигура, способная замостить плоскость без пробелов и наложений. Именно поэтому шестиугольную форму часто имеют декоративные отделочные материалы, например, кафельная и тротуарная плитка или гипсокартонные панели.

Эффективность гексагона делает его популярным и в природе. Пчелиные соты обладают именно шестиугольной формой, благодаря которой пространство улья заполняется без пробелов. Еще одним примером гексагонального замощения плоскости является Тропа Великанов - памятник живой природы, сформированный во время извержения вулкана. Вулканический пепел был спрессован в шестиугольные колонны, которые замостили поверхность побережья Северной Ирландии.

Упаковка кругов на плоскости

И еще немного об эффективности гексагона. Упаковка шаров - классическая задача комбинаторной геометрии, которая требует найти оптимальный способ укладки непересекающихся шаров. На практике такая задача превращается в логистическую проблему упаковки апельсинов, яблок, пушечных ядер или любых других шарообразных объектов, которые требуется уложить максимально плотно. Гескагон - решение данной проблемы.

Известно, что наиболее эффективным расположением кругов в двухмерном пространстве является размещение центров окружностей на вершинах шестиугольников, которые заполняют плоскость без пробелов. В трехмерной реальности задача размещения шаров решается путем гексагональной укладки объектов.

При помощи нашего калькулятора вы можете вычислить площадь правильного шестиугольника, зная его сторону или радиусы соответствующих окружностей. Давайте попробуем вычислить площади гексагонов на реальных примерах.

Примеры из реальной жизни

Гигантский гексагон

Гигантский гексагон - уникальное атмосферное явление на Сатуре, которое выглядит как грандиозный вихрь в форме правильного шестиугольника. Известно, что сторона гигантского гексагона составляет 13 800 км, благодаря чему мы можем определить площадь «облака». Для этого достаточно ввести значение стороны в форму калькулятора и получить результат:

Таким образом, площадь атмосферного вихря на Сатурне приблизительно составляет 494 777 633 квадратных километров. Поистине впечатляет.

Гексагональные шахматы

Мы все привыкли к шахматному полю, разделенному на 64 квадратные ячейки. Однако существуют и гексагональные шахматы, игровое поле которых разделено на 91 правильный шестиугольник. Давайте определим площадь игровой доски для гексагональной версии известной игры. Пусть сторона ячейки составляет 2 сантиметра. Площадь одной игровой клетки составит:

Тогда площадь всей доски будет равна 91 × 10,39 = 945,49 квадратных сантиметров.

Заключение

Шестиугольник часто встречается в реальности, хотя мы и не замечаем этого. Используйте наш онлайн-калькулятор для расчета площадей гексагонов при решении повседневных или школьных задач.