Как найти объем параллелепипеда формула. Как найти объем параллелепипеда

Прямоугольник - одна из самых простых плоских фигур, а прямоугольный параллелепипед - такая же простая фигура, но в пространстве (рис. 1). Они очень похожи.

Так же похожи, как круг и шар.

Рис. 1. Прямоугольник и параллелепипед

Разговор про площади начинают с площади прямоугольника, а про объемы - с объема прямоугольного параллелепипеда.

Если мы умеем находить площадь прямоугольника, то это нам позволяет найти площадь любой фигуры.

Вот эту фигуру мы можем разбить на 3 прямоугольника и найти площадь каждого, а значит, и всей фигуры. (Рис. 2.)

Рис. 2. Фигура

Рис. 3. Фигура, площадь которой равна семи прямоугольникам

Даже если фигура не разбивается точно на прямоугольники, это можно сделать с любой точностью и площадь посчитать приблизительно.

Площадь этой фигуры (рис. 3) примерно равна сумме площадей семи прямоугольников. Неточность получается за счет верхних маленьких фигур. Если увеличить число прямоугольников, то неточность уменьшится.

То есть прямоугольник - это инструмент для вычисления площадей любых фигур.

Такая же ситуация, когда речь идет об объемах.

Любую фигуру можно выложить прямоугольными параллелепипедами, кирпичиками. Чем мельче будут эти кирпичики, тем точнее мы сможем посчитать объем (рис. 4, рис.5).

Рис. 4. Вычисление площади с помощью прямоугольных параллелепипедов

Прямоугольный параллелепипед является инструментом для вычисления объемов любых фигур.

Рис. 5. Вычисление площади с помощью маленьких параллелепипедов

Давайте немного вспомним.

Квадрат со стороной 1 единица (рис. 6) имеет площадь в 1 квадратную единицу. Исходная линейная единица может быть любой: сантиметр, метр, километр, миля.

Например, 1 см 2 - это площадь квадрата со стороной 1 см.

Рис. 6. Квадрат и прямоугольник

Площадь прямоугольника - это количество таких квадратов, которые в него поместятся. (Рис. 6.)

Уложим единичные квадраты в длину прямоугольника в один ряд. Получилось 5 штук.

В высоту помещается 3 квадрата. Значит, всего помещается три ряда, в каждом по пять квадратов.

Итого площадь равна .

Понятно, что нет нужды каждый раз внутри прямоугольника размещать единичные квадраты.

Достаточно умножить длину одной стороны на длину другой.

Или в общем виде:

Очень похоже обстоят дела с объемом прямоугольного параллелепипеда.

Объем куба со стороной 1 единица - это 1 кубическая единица. Опять же, исходные линейные величины могут быть любыми: миллиметры, сантиметры, дюймы.

Например, 1 см 3 - это объем куба со стороной 1 см, а 1 км 3 - это объем куба со стороной 1 км.

Найдем объем прямоугольного параллелепипеда со сторонами 7 см, 5 см, 4 см. (Рис. 7.)

Рис. 7. Прямоугольный параллелепипед

Объем нашего прямоугольного параллелепипеда - это количество единичных кубов, помещающихся в него.

Уложим на дно ряд единичных кубиков со стороной 1 см вдоль длинной стороны. Поместилось 7 штук. Уже по опыту работы с прямоугольником мы знаем, что на дно поместится всего 5 таких рядов, по 7 штук в каждом. То есть всего:

Назовем это слой. Сколько таких слоев мы можем уложить друг на друга?

Это зависит от высоты. Она равна 4 см. Значит, укладывается 4 слоя в каждом по 35 штук. Всего:

А откуда у нас появилось число 35? Это 75. То есть количество кубиков мы получили перемножением длин всех трех сторон.

Но это и есть объем нашего прямоугольного параллелепипеда.

Ответ: 140

Теперь мы можем записать формулу и в общем виде. (Рис. 8.)

Рис. 8. Объем параллелепипеда

Объем прямоугольного параллелепипеда со сторонами , , равен произведению всех трех сторон.

Если длины сторон даны в сантиметрах, то объем получится в кубических сантиметрах (см 3).

Если в метрах, то объем в кубических метрах (м 3).

Аналогично объем может быть измерен в кубических миллиметрах, километрах и т. д.

Стеклянный куб со стороной 1 м наполнен водой целиком. Какова масса воды? (Рис. 9.)

Рис. 9. Куб

Куб является единичным. Сторона - 1 м. Объем - 1 м 3 .

Если мы знаем, сколько весит 1 кубический метр воды (сокращенно говорят кубометр), то задача решена.

Но если мы этого не знаем, то нетрудно посчитать.

Длина стороны .

Посчитаем объем в дм 3 .

Но 1 дм 3 имеет отдельное название, 1 литр. То есть у нас 1000 литров воды.

Нам всем известно, что масса одного литра воды равна 1 кг. То есть у нас 1000 кг воды, или 1 тонна.

Понятно, что такой куб, наполненный водой, не под силу передвинуть ни одному обычному человеку.

Ответ: 1 т.

Рис. 10. Холодильник

Холодильник имеет высоту 2 метра, ширину 60 см и глубину 50 см. Найти его объем.

Прежде чем мы воспользуемся формулой объема - произведение длин всех сторон - необходимо перевести длины в одинаковые единицы измерения.

Мы можем перевести все в сантиметры.

Соответственно, и объем мы получим в кубических сантиметрах.

Думаю, вы согласитесь, что в кубических метрах объем более понятен.

Человек на глаз плохо отличает число с пятью нулями от числа с шестью нулями, а ведь одно в 10 раз больше, чем другое.

Часто нам нужно перевести одну единицу объема в другую. Например, кубометры в кубические дециметры. Тяжело запомнить все эти соотношения. Но этого и не нужно делать. Достаточно понять общий принцип.

Например, сколько кубических сантиметров в кубическом метре?

Давайте посмотрим, сколько кубиков со стороной 1 сантиметр поместится в куб со стороной 1 м. (Рис. 11.)

Рис. 11. Куб

В один ряд укладывается 100 штук (ведь в одном метре 100 см).

В один слой укладывается 100 рядов или кубиков.

Всего помещается 100 слоев.

Таким образом,

То есть если линейные величины связаны соотношением «в одном метре 100 см», то чтобы получить соотношение для кубических величин, нужно возвести 100 в 3 степень (). И не нужно каждый раз чертить кубы.

Часто ученики возмущенно спрашивают: «Как мне в жизни это пригодится?». На любую тему каждого предмета. Не становится исключением и тема про объем параллелепипеда. И вот здесь как раз можно сказать: «Пригодится».

Как, например, узнать, поместится ли в почтовую коробку посылка? Конечно, можно методом проб и ошибок выбрать подходящую. А если такой возможности нет? Тогда на выручку придут вычисления. Зная вместимость коробки, можно рассчитать объем посылки (хотя бы приблизительно) и ответить на поставленный вопрос.

Параллелепипед и его виды

Если дословно перевести его название с древнегреческого, то получится, что это фигура, состоящая из параллельных плоскостей. Существуют такие равносильные определения параллелепипеда:

  • призма с основанием в виде параллелограмма;
  • многогранник, каждая грань которого - параллелограмм.

Его виды выделяются в зависимости от того, какая фигура лежит в его основании и как направлены боковые ребра. В общем случае говорят о наклонном параллелепипеде , у которого основание и все грани — параллелограммы. Если у предыдущего вида боковые грани станут прямоугольниками, то его нужно будет называть уже прямым . А у прямоугольного и основание тоже имеет углы по 90º.

Причем последний в геометрии стараются изображать так, чтобы было заметно, что все ребра параллельны. Здесь, кстати, наблюдается основное отличие математиков от художников. Последним важно передать тело с соблюдением закона перспективы. И в этом случае параллельность ребер совсем незаметна.

О введенных обозначениях

В приведенных ниже формулах справедливы обозначения, указанные в таблице.

Формулы для наклонного параллелепипеда

Первая и вторая для площадей:

Третья для того, чтобы вычислить объем параллелепипеда:

Так как основание - параллелограмм, то для расчета его площади нужно будет воспользоваться соответствующими выражениями.

Формулы для прямоугольного параллелепипеда

Аналогично первому пункту - две формулы для площадей:

И еще одна для объема:

Первая задача

Условие. Дан прямоугольный параллелепипед, объем которого требуется найти. Известна диагональ — 18 см - и то, что она образует углы в 30 и 45 градусов с плоскостью боковой грани и боковым ребром соответственно.

Решение. Чтобы ответить на вопрос задачи, потребуется узнать все стороны в трех прямоугольных треугольниках. Они дадут необходимые значения ребер, по которым нужно сосчитать объем.

Сначала нужно выяснить, где находится угол в 30º. Для этого нужно провести диагональ боковой грани из той же вершины, откуда чертилась главная диагональ параллелограмма. Угол между ними и будет тем, что нужен.

Первый треугольник, который даст одно из значений сторон основания, будет следующим. В нем содержатся искомая сторона и две проведенные диагонали. Он прямоугольный. Теперь потребуется воспользоваться отношением противолежащего катета (стороны основания) и гипотенузы (диагонали). Оно равно синусу 30º. То есть неизвестная сторона основания будет определяться как диагональ, умноженная на синус 30º или ½. Пусть она будет обозначена буквой «а».

Вторым будет треугольник, содержащий известную диагональ и ребро, с которым она образует 45º. Он тоже прямоугольный, и можно опять воспользоваться отношением катета к гипотенузе. Другими словами, бокового ребра к диагонали. Оно равно косинусу 45º. То есть «с» вычисляется как произведение диагонали на косинус 45º.

с = 18 * 1/√2 = 9 √2 (см).

В этом же треугольнике требуется найти другой катет. Это необходимо для того, чтобы потом сосчитать третью неизвестную - «в». Пусть она будет обозначена буквой «х». Ее легко вычислить по теореме Пифагора:

х = √(18 2 - (9√2) 2) = 9√2 (см).

Теперь нужно рассмотреть еще один прямоугольный треугольник. Он содержит уже известные стороны «с», «х» и ту, что нужно сосчитать, «в»:

в = √((9√2) 2 - 9 2 = 9 (см).

Все три величины известны. Можно воспользоваться формулой для объема и сосчитать его:

V = 9 * 9 * 9√2 = 729√2 (см 3).

Ответ: объем параллелепипеда равен 729√2 см 3 .

Вторая задача

Условие. Требуется найти объем параллелепипеда. В нем известны стороны параллелограмма, который лежит в основании, 3 и 6 см, а также его острый угол — 45º. Боковое ребро имеет наклон к основанию в 30º и равно 4 см.

Решение. Для ответа на вопрос задачи нужно взять формулу, которая была записана для объема наклонного параллелепипеда. Но в ней неизвестны обе величины.

Площадь основания, то есть параллелограмма, будет определена по формуле, в которой нужно перемножить известные стороны и синус острого угла между ними.

S о = 3 * 6 sin 45º = 18 * (√2)/2 = 9 √2 (см 2).

Вторая неизвестная величина — это высота. Ее можно провести из любой из четырех вершин над основанием. Ее найти можно из прямоугольного треугольника, в котором высота является катетом, а боковое ребро — гипотенузой. При этом угол в 30º лежит напротив неизвестной высоты. Значит, можно воспользоваться отношением катета к гипотенузе.

н = 4 * sin 30º = 4 * 1/2 = 2.

Теперь все значения известны и можно вычислить объем:

V = 9 √2 * 2 = 18 √2 (см 3).

Ответ: объем равен 18 √2 см 3 .

Третья задача

Условие. Найти объем параллелепипеда, если известно, что он прямой. Стороны его основания образуют параллелограмм и равны 2 и 3 см. Острый угол между ними 60º. Меньшая диагональ параллелепипеда равна большей диагонали основания.

Решение. Для того чтобы узнать объем параллелепипеда, воспользуемся формулой с площадью основания и высотой. Обе величины неизвестны, но их несложно вычислить. Первая из них высота.

Поскольку меньшая диагональ параллелепипеда совпадает по размеру с большей основания, то их можно обозначить одной буквой d. Больший угол параллелограмма равен 120º, поскольку с острым он образует 180º. Пусть вторая диагональ основания будет обозначена буквой «х». Теперь для двух диагоналей основания можно записать теоремы косинусов :

d 2 = а 2 + в 2 - 2ав cos 120º,

х 2 = а 2 + в 2 - 2ав cos 60º.

Находить значения без квадратов не имеет смысла, так как потом они будут снова возведены во вторую степень. После подстановки данных получается:

d 2 = 2 2 + 3 2 - 2 * 2 * 3 cos 120º = 4 + 9 + 12 * ½ = 19,

х 2 = а 2 + в 2 - 2ав cos 60º = 4 + 9 - 12 * ½ = 7.

Теперь высота, она же боковое ребро параллелепипеда, окажется катетом в треугольнике. Гипотенузой будет известная диагональ тела, а вторым катетом — «х». Можно записать Теорему Пифагора:

н 2 = d 2 - х 2 = 19 - 7 = 12.

Отсюда: н = √12 = 2√3 (см).

Теперь вторая неизвестная величина — площадь основания. Ее можно сосчитать по формуле, упомянутой во второй задаче.

S о = 2 * 3 sin 60º = 6 * √3/2 = 3√3 (см 2).

Объединив все в формулу объема, получаем:

V = 3√3 * 2√3 = 18 (см 3).

Ответ: V = 18 см 3 .

Четвертая задача

Условие. Требуется узнать объем параллелепипеда, отвечающего таким условиям: основание — квадрат со стороной 5 см; боковые грани являются ромбами; одна из вершин, находящихся над основанием, равноудалена от всех вершин, лежащих в основании.

Решение. Сначала нужно разобраться с условием. С первым пунктом про квадрат вопросов нет. Второй, про ромбы, дает понять, что параллелепипед наклонный. Причем все его ребра равны 5 см, поскольку стороны у ромба одинаковые. А из третьего становится ясно, что три диагонали, проведенные из нее, равны. Это две, которые лежат на боковых гранях, а последняя внутри параллелепипеда. И эти диагонали равны ребру, то есть тоже имеют длину 5 см.

Для определения объема будет нужна формула, записанная для наклонного параллелепипеда. В ней опять нет известных величин. Однако площадь основания вычислить легко, потому что это квадрат.

S о = 5 2 = 25 (см 2).

Немного сложнее обстоит дело с высотой. Она будет таковой в трех фигурах: параллелепипеде, четырехугольной пирамиде и равнобедренном треугольнике. Последним обстоятельством и нужно воспользоваться.

Поскольку она высота, то является катетом в прямоугольном треугольнике. Гипотенузой в нем будет известное ребро, а второй катет равен половине диагонали квадрата (высота - она же и медиана). А диагональ основания найти просто:

d = √(2 * 5 2) = 5√2 (см).

Высоту нужно будет сосчитать как разность второй степени ребра и квадрата половины диагонали и не забыть потом извлечь квадратный корень :

н = √ (5 2 - (5/2 * √2) 2) = √(25 - 25/2) = √(25/2) = 2,5 √2 (см).

V = 25 * 2,5 √2 = 62,5 √2 (см 3).

Ответ: 62,5 √2 (см 3).

Любое геометрическое тело можно охарактеризовать площадью (S) поверхности и объемом (V). Площадь и объем совсем не одно и то же. Объект может иметь сравнительно небольшой V и большую S, например, так устроен мозг человека. Вычислить данные показатели для простых геометрических фигур гораздо проще.

Параллелепипед: определение, виды и свойства

Параллелепипед – это четырехугольная призма, в основании которой находится параллелограмм. Для чего же может потребоваться формула нахождения объема фигуры? Подобную форму имеют книги, упаковочные коробки и еще множество вещей из повседневной жизни. Комнаты в жилых и офисных домах, как правило, являются прямоугольными параллелепипедами. Для установки вентиляции, кондиционеров и определение количества обогревательных элементов в комнате необходимо рассчитать объем помещения.

У фигуры 6 граней – параллелограммов и 12 ребер, две произвольно выбранные грани называют основаниями. Параллелепипед может быть нескольких видов. Различия обусловлены углами между смежными ребрами. Формулы для нахождения V-ов различных многоугольников немного отличаются.

Если 6 граней геометрической фигуры представляют собой прямоугольники, то ее тоже называют прямоугольной. Куб – это частный случай параллелепипеда, в котором все 6 граней представляют собой равные квадраты. В этом случае, чтобы найти V, нужно узнать длину только одной стороны и возвести ее в третью степень.

Для решения задач понадобятся знания не только готовых формул, но свойств фигуры. Перечень основных свойств прямоугольной призмы невелик и очень прост для понимания:

  1. Противолежащие грани фигуры равны и параллельны. Это значит, что ребра расположенные напротив одинаковы по длине и углу наклона.
  2. Все боковые грани прямого параллелепипеда – прямоугольники.
  3. Четыре главные диагонали геометрической фигуры пересекаются в одной точкой, и делятся ею пополам.
  4. Квадрат диагонали параллелепипеда равен суме квадратов измерений фигуры (следует из теоремы Пифагора).

Теорема Пифагора гласит, что сумма площадей квадратов, построенных на катетах прямоугольного треугольника, равна площади треугольника, построенного на гипотенузе того же треугольника.

Доказательство последнего свойства можно разобрать на изображении представленном ниже. Ход решения поставленной задачи прост и не требует подробных объяснений.

Формула объема прямоугольного параллелепипеда

Формула нахождения для всех видов геометрической фигуры одна: V=S*h, где V- искомый объем, S – площадь основания параллелепипеда, h – высота, опущенная из противоположной вершины и перпендикулярная основанию. В прямоугольнике h совпадает с одной из сторон фигуры, поэтому чтобы найти объем прямоугольной призмы необходимо перемножить три измерения.

Объем принято выражать в см3. Зная все три значения a, b и c найти объем фигуры совсем не сложно. Наиболее часто встречающийся тип задач в ЕГЭ – это поиск объема или диагонали параллелепипеда. Решить многие типовые задания ЕГЭ без формулы объема прямоугольника – невозможно. Пример задания и оформления его решения приведен на рисунке ниже.

Примечание 1 . Площадь поверхности прямоугольной призмы можно найти, если умножить на 2 сумму площадей трех граней фигуры: основания (ab) и двух смежных боковых граней (bc + ac).

Примечание 2 . Площадь поверхности боковых граней легко узнать умножив периметр основания на высоту параллелепипеда.

Исходя из первого свойства параллелепипедов AB = A1B1, а грань B1D1 = BD. Согласно следствиям из теоремы Пифагора сумма всех углов в прямоугольном треугольнике равна 180°, а катет, лежащий против угла в 30°, равен гипотенузы. Применив данные знания для треугольника, легко находим длину сторон AB и AD. Затем перемножаем полученные значения и вычисляем объем параллелепипеда.

Формула для нахождения объема наклонного параллелепипеда

Чтобы найти объем наклонного параллелепипеда необходимо площадь основания фигуры умножить на высоту, опущенную на данное основание из противоположного угла.

Таким образом, искомый V можно представить в виде h — количества листов с площадью S основания, так объем колоды складывается из V-ов всех карт.

Примеры решения задач

Задания единого экзамена должны быть выполнены за определенное время. Типовые задачи, как правило, не содержать большого количества вычислений и сложных дробей. Часто школьнику предлагают как найти объем неправильной геометрической фигуры. В таких случаях следует помнить простое правило, что общий объем равен сумме V-ов составных частей.

Как видно из примера на изображении выше, ничего сложного в решении подобных задач нет. Задания из более сложных разделов предполагают знания теоремы Пифагора и ее следствий, а так же формулу длины диагонали фигуры. Для успешного решения заданий тестов достаточно заранее ознакомится с образцами типовых задач.

Параллелепипед - это призматическая фигура, все грани которой являются параллелограммами. Если в роли граней выступают обычные прямоугольники, то параллелепипед является прямоугольным и именно форму данной фигуры имеют такие реальные объекты как панельные дома, аквариумы, книги, принтеры или кирпичи.

Геометрия параллелепипеда

Прямоугольный параллелепипед ограничен шестью гранями, при этом противоположные грани фигуры равны и параллельны друг другу. Данная геометрическая фигура представляет собой частный случай прямой четырехугольной призмы. Параллелепипед имеет 12 ребер и 8 вершин. В каждой из вершин сходятся по три ребра фигуры, которые являются длиной, шириной и высотой параллелепипеда или его измерениями. Если длина, ширина и высота фигуры равны, то параллелепипед превращается в куб.

Параллелепипеды в реальной жизни

Большое количество существующих в реальности объектов имеют форму параллелепипеда. Широкое распространение такая форма получила благодаря легкости производства, удобству хранения и транспортировки, идеальной сочетаемости одинаковых параллелепипедов, устойчивости и постоянству размеров. Параллелепипедную форму имеют такие объекты, как кирпичи, коробки, смартфоны, блоки питания, дома, комнаты и многое другое.

Объем параллелепипеда

Важным свойством любого геометрического тела является его вместимость, то есть объем фигуры. Объем - это характеристика объекта, которая показывает, сколько единичных кубов он способен вместить. В общем случае объем любой призматической фигуры рассчитывается по формуле:

где So – площадь основания фигуры, а h – ее высота.

Данная формула легко иллюстрируется следующим примером. Представьте, что у вас есть один лист бумаги А4. Это обычный прямоугольник, который характеризуется строго определенной площадью. Грубо говоря, лист - это плоскость. Теперь представьте стандартную пачку бумаги из 500 листов формата А4. Это уже объемная фигура, имеющая форму параллелепипеда. Узнать ее объем легко, достаточно перемножить площадь листа, лежащего в основании, на их количество, то есть, на высоту призмы.

Параллелепипед - это частный случай призмы, в основании которой лежит прямоугольник. Площадь прямоугольника представляет собой простое произведение его сторон, следовательно, для параллелепипеда:

Для определения объема достаточно умножить So на высоту фигуры. Таким образом, объем прямоугольного параллелепипеда считается по простой формуле, представляющей перемножение трех сторон тела:

V = a × b × h,

где a – длина, b – ширина, h – высота геометрической фигуры.

Для определения объема прямоугольного параллелепипеда вам достаточно замерить три этих параметра и просто перемножить их. Если вы не хотите постоянно держать в голове формулы определения объемов и площадей геометрических фигур, то воспользуйтесь нашим каталогом онлайн-калькуляторов: каждый инструмент подскажет вам, какие параметры вы должны замерить и мгновенно вычислит результат. Рассмотрим пару примеров, когда вам может понадобиться определить объем параллелепипеда.

Примеры из жизни

Аквариум

К примеру, вы купили старый аквариум в форме параллелепипеда, но вам никто не сказал, какой объем имеет данная конструкция. Объем аквариума - важный параметр, по которому определяется мощность системы обогрева для морских обитателей. Вычислить данную характеристику несложно - достаточно замерить длину, ширину и высоту аквариума и ввести эти данные в форму калькулятора. Допустим, длина аквариума составляет 1 м, ширина - 50 см, а высота - 70 см. Для правильного расчета важно выразить все стороны в одних единицах измерения, допустим, в метрах.

V = 1 × 0,5 × 0,7 = 0,35

Таким образом, объем аквариума составит 0,35 кубических метров или 350 литров. Зная объем, вы без проблем подберете мощность для системы обогрева.

Строительство

Допустим, вы заливаете плитный фундамент для своей дачи и вам необходимо узнать, сколько бетона понадобится для заливки основания. Плитный фундамент - это цельная монолитная плита, которая располагается под всей площадью здания. Для того чтобы узнать требуемый объем бетона, необходимо вычислить объем плиты. Плита, к счастью, имеет форму прямоугольного параллелепипеда, поэтому вы без проблем можете подсчитать нужное количество бетона. Допустим, ваша дача - это стандартный домик 6 на 6 метров. Вы уже знаете два из трех необходимых параметров. Согласно требованиям, толщина плитного фундамента должна быть не менее 10 см, и вы можете сами выбрать подходящий размер. К примеру, вы решили залить плиту толщиной 20 см. Для правильного расчета задайте все параметры в одних единицах измерения, то есть метрах, и получите результат:

V = 6 × 6 × 0,2 = 7,2

Следовательно, для заливки фундамента вам понадобится 7,2 кубических метров бетона.

Заключение

Определение объема параллелепипедных фигур может пригодиться вам во многих случаях: от бытовых проблем до производственных вопросов, от школьных заданий до проектных задач. Наш онлайн-калькулятор поможет вам решить задания любой сложности.

>> Урок 31. Формула объёма прямоугольного параллелепипеда

Прямоугольный параллелепипед - это пространственная фигура, ограниченная прямоугольниками .

Форму параллелепипеда имеют многие предметы из окружающей обстановки: коробка, кубики, телевизор, шкаф и т. д..

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки