Горение каких горючих смесей называют гетерогенным. Гомогенное горение. Гомогенное и гетерогенное горение

Исходя из рассмотренных примеров, в зависимости от агрегатного со-стояния смеси горючего и окислителя, т.е. от количества фаз в смеси, разли-чают:

1. Гомогенное горение газов и паров горючих веществ в среде газооб-разного окислителя. Таким образом, реакция горения протекает в системе, состоящей из одной фазы (агрегатного состояния).

2. Гетерогенное горение твердых горючих веществ в среде газообраз-ного окислителя. В этом случае реакция протекает на поверхности раздела фаз, в то время как гомогенная реакция идет во всем объеме.

Это горение металлов, графита, т.е. практически нелетучих материалов. Многие газовые реакции имеют гомогенно-гетерогенную природу, когда возможность протекания гомогенной реакции обусловлена происхождением одновременно гетерогенной реакции.

Горение всех жидких и многих твердых веществ, из которых выделяя-ются пары или газы (летучие вещества) протекает в газовой фазе. Твердая и жидкая фазы играют роль резервуаров реагирующих продуктов.

Например, гетерогенная реакция самовозгорания угля переходит в го-могенную фазу горения летучих веществ. Коксовый остаток горит гетероген-но.

Конец работы -

Эта тема принадлежит разделу:

Теоретические основы горения и взрыва

В и говоров в м плотников е в каратай.. теоретические основы горения и взрыва..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Свойства газов
Основное уравнение кинетической теории газов имеет вид: , (2.1) где: WK

Свойства газовых смесей
При рассмотрении смесей газов добавляются понятия: «концентрация» и «парциальное давление». 1. Весовая концентрация Сi i–го газа, входящего в со

Парциальные давление и объем
Давление – это сила, действующая на единицу поверхности. Оно прямо пропорционально числу молекул, сталкивающихся с этой поверхностью. Давление зависит не только от числа молекул, но и от скорости и

Свойства жидкостей
До сих пор мы рассматривали газы. Но одно и то же вещество в зави-симости от соотношения между средней кинетической и средней потенци-альной энергиями частиц может находиться в одно

Свойства сжиженных газов
Сжижение газов осуществляется путем охлаждения их ниже темпера-туры кипения. Промышленный метод сжижение газов основан на использо-вании положительного эффекта Джоуля-Томпсона, т.е.

Свойства твердых веществ
Сильный нагрев твердого тела приводит к плавлению и переходу в жидкое состояние, а затем при испарении – в газ. Ряд твердых веществ может непосредственно из твердой фазы перейти в г

Химизм реакций горения
Как Вы уже уяснили, горением называется быстропротекающая хими-ческая реакция, сопровождающаяся выделением тепла и свечением (пламе-нем). Обычно – это экзотермическая окислительная

Тепловой эффект реакции
То, что в каждом индивидуальном веществе заключено определенное количество энергии, служит объяснением тепловых эффектов химических реакций. По закону Гесса: Тепловой эффек

Кинетические основы газовых реакций
По закону действующих масс скорость реакции при постоянной темпе-ратуре пропорциональна концентрации реагирующих веществ или, как гово-рят, «действующих масс». Скоростью химической реакции

Энергия активации реакции
Для объяснения данного явления часто пользуются следующим приме-ром (рис. 9): На площадке лежит шар. Площадка расположена перед горкой. Поэто-му шар мог бы скатиться сам вн

Катализ
Кроме повышения температуры и концентрации веществ, для ускоре-ния химической реакции используют катализаторы, т.е. вещества, которые вводятся в реагирующую смесь,

Адсорбция
Адсорбция – поверхностное поглощение какого-либо вещества из га-зообразной среды или раствора поверхностным слоем другого вещества – жидкости или твердого тела.

Горение газообразных, жидких и твердых веществ
В зависимости от агрегатного состояния горючего вещества различают горение газов, жидкостей, пылевидных и компактных твердых веществ. Согласно ГОСТ 12.1.044-89: 1.

Диффузионное и кинетическое горение
По степени подготовки горючей смеси различают диффузионное и ки-нетическое горение. Рассмотренные виды горения (кроме взрывчатки) относятся к диффу-зионному горению. Пламя,

Нормальное горение
В зависимости от скорости распространения пламени при кинетиче-ском горении может реализоваться либо нормальное горение (в пределах не-скольких м/с), либо взрывное дефлаграционное (

Дефлаграционное (взрывное) горение
Нормальное горение неустойчиво и в закрытом пространстве склонно к самоускорению. Причиной этому является искривление фронта пламени вследствие трения газа о стенки сосуда и изменен

Общие показатели для горючих веществ и видов горения
Общими показателями для любых веществ и видов горения являются: 1) Группа горючести -это способность вещества или материала к го-рению. По горючести вещества и материалы п

И пылевоздушных смесей
Показателями взрывной и пожарной опасности газов, паров жидкостей и пылевоздушных смесей (пылевого облака) являются: 1) Нижний и верхний концентрационные пределы воспламенения (рас

Видных веществ
Показателями пожарной опасности при диффузионном горении твер-дых веществ и осевшей пыли являются: 1) Температура самонагревания– это самая низкая температ

Тепловое самовоспламенение (тепловой взрыв)
Самовоспламенение – это явление резкого увеличения скорости экзо-термических реакций, приводящее к самопроизвольному возникновению го-рения вещества в отсутствии ис

Самовозгорание
Самовозгорание представляет собой процесс низкотемпературного окисления дисперсных материалов, заканчивающийся тлением или пламен-ным горением. Склонность к самовозгоранию веществ о

Цепное самовоспламенение (цепной взрыв)
По теории Аррениуса скорость химической реакций определяется чис-лом молекул, обладающей энергией активации. Однако саморазогрев горю-чей смеси при экзотермической реакции из-за нед

Зажигание
Зажигание– это процесс инициирования начального очага горения в горючей смеси за счет ввода в смесь извне высокотемпературного источника тепловой энергии. Происхожд

Тепловая теория горения
При адиабатическом, т.е. не сопровождающемся тепловыми потерями сгорании, весь запас химической энергии горючей системы переходит в тепловую энергию продуктов реакции. Температура п

Горение в замкнутом объеме
При горении газов в открытой трубе и в потоке продукты реакции свободно расширяются, давление остается практически постоянным. Сжигание в замкнутом сосуде связано с ростом давления.

Движение газов при горении
Расширение газов в пламени (по закону Гей-Люссака) приводит к тому, что горение всегда сопровождается движением газов. Обозначим через ρг – плотность исходной среды,

Факторы ускорения горения
Различные режимы дефлаграционного горения отличаются только ско-ростью распространения пламени в связи с неодинаковым развитием по­вер-хности фронта пламени. Горение первоначально н

Условия возникновения взрыва
Как мы выяснили ранее, взрывом называется химическое или физиче­-ское превращение вещества, сопровождающееся крайне быстрым переходом его энергии в энергию сжатия и движения исходны

Ударные волны в инертном газе
Ударное сжатие.При любом резком повышении давления в газе или жидкости возникает волна сжатия – ударная волна. Она распространяется по сжимаемой среде, переводя ее

Воспламенение при быстром сжатии
Горючая среда может воспламеняться не только при введении в нагре-тый сосуд. Возможен и другой режим воспламенения, уже не самопроизволь-ного, а вынужденного – при нагревании горючей среды в сосуде

Возникновение детонации
Ускорение горения в трубах. Для возникновения детонации необходи-ма сильная ударная волна, в которой происходит достаточное нагревание взрывчатой среды. Така

Стационарный режим распространения детонации
Достаточно сильная ударная волна может вызвать воспламенение на-гретой ею взрывчатой среды. Однако горение, вызванное одиночным импуль-сом сжатия, может быть нестационарным. При оди

Вырождение детонации
Концентрационные пределы детонации. Тепловые потери из зоны реакции детонационной волны в стенках приводят к отклонениям от зако-номерностей детонации, изложенных в

Горючее Воздушные смеси Кислородные смеси
СН4 4,1 0,35 Н2 0,80 0,30 С2Н2 0,85 0,08 Шероховатости стенок трубы могут о

Концентрационные пределы распространения пламени
Из теории горения следует, что по мере понижения содержания недос-тающего компонента горючей смеси, а с ним и температуры горения, умень-шается нормальная скорость пламени. Изложенн

Затухание пламени в узких каналах
Если в затухании пламени главную роль играет теплоотвод излучением, который определяет пределы распространения пламени, то для быстрогоря-щих газовых смесей радиационные потери малы

Механизм флегматизации взрывоопасных смесей
Достаточно широко используется метод обеспечения взрывобезопасно-сти, основанный на снижении концентрации горючего меньшей нижнего концентрационного предела. Для его объя

горение кислородный взрыв

К гомогенному относится горение предварительно перемешанных газов. Многочисленными примерами гомогенного горения являются процессы сгорания газов или паров, в которых окислителем является кислород воздуха: горение смесей водорода, смесей оксида углерода и углеводородов с воздухом. В практически важных случаях не всегда выполняется условие полного предварительного перемешивания. Поэтому всегда возможны комбинации гомогенного с другими видами горения.

Гомогенное горение может быть реализовано в двух режимах: ламинарном и турбулентном. Турбулентность ускоряет процесс горения за счет дробления фронта пламени на отдельные фрагменты и соответственно увеличения площади контакта реагирующих веществ при крупномасштабной турбулентности или ускорения процессов те-пломассопереноса во фронте пламени при мелкомасштабной. Турбулентному горению присуща автомодельность: турбулентные вихри увеличивают скорость горения, что приводит к увеличению турбулентности.

Все параметры гомогенного горения проявляются и в процессах, в которых окислителем выступает не кислород, а другие газы. Например, фтор, хлор или бром.

Гетерогенное горение происходит на поверхности раздела фаз. При этом одно из реагирующих веществ находится в конденсированном состоянии, другое (обычно кислород воздуха) поступает за счет диффузии газовой фазы. Обязательным условием гетерогенного горения является очень высокая температура кипения (или разложения) конденсированной фазы. При несоблюдении этого условия горению предшествует испарение или разложение. От поверхности в зону горения поступает поток пара или газообразных продуктов разложения, и горение происходит в газовой фазе. Такое горение можно отнести к диффузионным квазигетерогенным, но не полностью гетерогенным, поскольку процесс горения происходит уже не на границе фаз. Развитие такого горения осуществляется за счет теплового потока от факела пламени к поверхности материала, который обеспечивает дальнейшее испарение или разложение и поступление горючего в зону горения. В подобных ситуациях возникает смешанный случай, когда реакции горения частично протекают гетеро-генно - на поверхности конденсированной фазы, частично гомогенно - в объеме газовой смеси.

Примером гетерогенного горения является горение каменного и древесного угля. При сгорании этих веществ протекают реакции двоякого рода. Некоторые сорта каменного угля выделяют при нагревании летучие компоненты. Сгоранию таких углей предшествует их частичное термическое разложение с выделением газообразных углеводородов и водорода, сгорающих в газовой фазе. Кроме того, при сгорании чистого углерода может образовываться оксид углерода СО, догорающий в объеме. При достаточном избытке воздуха и высокой температуре поверхности угля объемные реакции протекают настолько близко от поверхности, что в определенном приближении дает основание считать такой процесс гетерогенным.

Примером действительно гетерогенного горения является горение тугоплавких нелетучих металлов. Эти процессы могут осложняться образованием окислов, покрывающих горящую поверхность и препятствующих контакту с кислородом. При большой разнице в физико-химических свойствах между металлом и его окислом в процессе горения окисная пленка растрескивается, и доступ кислорода в зону горения обеспечивается.

Исходя из рассмотренных примеров, в зависимости от агрегатного со-стояния смеси горючего и окислителя, т.е. от количества фаз в смеси, разли-чают:

1. Гомогенное горение газов и паров горючих веществ в среде газооб-разного окислителя. Таким образом, реакция горения протекает в системе, состоящей из одной фазы (агрегатного состояния).

2. Гетерогенное горение твердых горючих веществ в среде газообраз-ного окислителя. В этом случае реакция протекает на поверхности раздела фаз, в то время как гомогенная реакция идет во всем объеме.

Это горение металлов, графита, т.е. практически нелетучих материалов. Многие газовые реакции имеют гомогенно-гетерогенную природу, когда возможность протекания гомогенной реакции обусловлена происхождением одновременно гетерогенной реакции.

Горение всех жидких и многих твердых веществ, из которых выделяя-ются пары или газы (летучие вещества) протекает в газовой фазе. Твердая и жидкая фазы играют роль резервуаров реагирующих продуктов.

Например, гетерогенная реакция самовозгорания угля переходит в го-могенную фазу горения летучих веществ. Коксовый остаток горит гетероген-но.

4.3. Диффузионное и кинетическое горение.

По степени подготовки горючей смеси различают диффузионное и ки-нетическое горение.

Рассмотренные виды горения (кроме взрывчатки) относятся к диффу-зионному горению. Пламя, т.е. зона горения смеси горючего с воздухом, для обеспечения устойчивости должна постоянно подпитываться горючим и ки-слородом воздуха. Поступление горючего газа зависит только от скорости его подачи в зону горения. Скорость поступления горючей жидкости зависит от интенсивности ее испарения, т.е. от давления паров над поверхностью жидкости, а, следовательно, от температуры жидкости. Температурой вос-пламенения называется наименьшая температура жидкости, при которой пламя над ее поверхностью не погаснет.

Горение твердых веществ отличается от горения газов наличием стадии разложения и газификации с последующим воспламенением летучих продук-тов пиролиза.

Пиролиз – это нагрев органических веществ до высоких температур без доступа воздуха. При этом происходит разложение, или расщепление, сложных соединений на более простые (коксование угля, крекинг нефти, су-хая перегонка дерева). Поэтому сгорание твердого горючего вещества в про-дукт горения не сосредоточено только в зоне пламени, а имеет многостадий-ный характер.

Нагрев твердой фазы вызывает разложение и выделение газов, которые воспламеняются и сгорают. Тепло от факела нагревает твердую фазу, вызы-вая ее газификацию и процесс повторяется, таким образом поддерживая го-рение.

Модель горения твердого вещества предполагает наличие следующих фаз (рис. 17):

Рис. 17. Модель горения

твердого вещества.

    прогрева твердой фазы. У плавящихся веществ в этой зоне происхо-дит плавление. Толщина зоны зависит от температуры проводности вещест-ва;

    пиролиза, или реакционной зоны в твердой фазе, в которой образу-ются газообразные горючие вещества;

    предпламенной в газовой фазе, в которой образуется смесь с окисли-телем;

    пламени, или реакционной зоны в газовой фазе, в которой превраще-ние продуктов пиролиза в газообразные продукты горения;

    продуктов горения.

Скорость подачи кислорода в зону горения зависит от его диффузии через продукт горения.

В общем, поскольку скорость химической реакции в зоне горения в рассматриваемых видах горения зависти от скорости поступления реаги-рующих компонентов и поверхности пламени путем молекулярной или кине-тической диффузии, этот вид горения и называют диффузионным .

Структура пламени диффузионного горения состоит из трех зон (рис.18):

В 1 зоне находятся газы или пары. Горение в этой зоне не происходит. Температура не превышает 500 0 С. Происходит разложение, пиролиз летучих и нагрев до температуры самовоспламенения.

Рис. 18. Структура пламени.

Во 2 зоне образуется смесь паров (газов) с кислородом воздуха и про-исходит неполное сгорание до СО с частичным восстановлением до углерода (мало кислорода):

C n H m + O 2 → CO + CO 2 + Н 2 О;

В 3 внешней зоне происходит полное сгорание продуктов второй зоны и наблюдается максимальная температура пламени:

2CO+O 2 =2CO 2 ;

Высота пламени пропорциональна коэффициенту диффузии и скорости потока газов и обратно пропорциональна плотности газа.

Все виды диффузионного горения присущи пожарам.

Кинетическим горением называется горение заранее перемешанных горючего газа, пара или пыли с окислителем. В этом случае скорость горения зависит только от физико-химических свойств горючей смеси (теплопровод-ности, теплоемкости, турбулентности, концентрации веществ, давления и т.п.). Поэтому скорость горения резко возрастает. Такой вид горения присущ взрывам.

Вданном случае при поджигании горючей смеси в какой-либо точке фронт пламени движется от продуктов сгорания в свежую смесь. Таким об-разом, пламя при кинетическом горении чаще всего нестационарно (рис. 19).

Рис. 19. Схема распространения пламени в горючей смеси: - источник зажигания; - направления движе-ния фронта пламени.

Хотя, если предварительно перемешать горючий газ с воздухом и подать в горелку, то при поджигании образуется стационарное пламя, при условии, что скорость подачи смеси будет равна скорости распространения пламени.

Если скорость подачи газов увеличить, то пламя отрывается от горелки и может погаснуть. А если скорость уменьшить, то пламя втянется во внутрь горелки с возможным взрывом.

По степени сгорания , т.е. полноты протекания реакции горения до ко-нечных продуктов, горение бывает полным и неполным .

Так в зоне 2 (рис.18) горение неполное, т.к. недостаточно поступает ки-слород, который частично расходуется в 3 зоне, и образуются промежуточ-ные продукты. Последние догорают в 3 зоне, где кислорода больше, до пол-ного сгорания. Наличие сажи в дыму говорит о неполном горении.

Другой пример: при недостатке кислорода углерод сгорает до угарного газа:

Если добавить O, то реакция идет до конца:

2СО+O 2 =2СО 2 .

Скорость горения зависит от характера движения газов. Поэтому раз-личают ламинарное и турбулентное горение.

Так, примером ламинарного горения может служить пламя свечи в не-подвижном воздухе. При ламинарном горении слои газов текут параллель-но, не завихряясь.

Турбулентное горение – вихревое движение газов, при котором интен-сивно перемешиваются сгорающие газы, и фронт пламени размывается. Гра-ницей между этими видами служит критерий Рейнольдса, который характе-ризует соотношение между силами инерции и силами трения в потоке:

, (4.1)

где: - скорость газового потока;

- кинетическая вязкость;

l – характерный линейный размер.

Число Рейнольдса, при котором происходит переход ламинарного по-граничного слоя в турбулентный называется критическим Re кр, Re кр ~ 2320.

Турбулентность увеличивает скорость горения из-за более интенсивной передачи тепла от продуктов горения в свежую смесь.

Тема 4. ВИДЫ ГОРЕНИЯ.

По разным признакам и особенностям процессы горения можно разде-лить на следующие виды:

По агрегатному состоянию горючего вещества:

Горение газов;

Горение жидкостей и плавящихся твердых веществ;

Горение неплавящихся твердых пылевидных и компактных веществ.

По фазовому составу компонентов:

Гомогенное горение;

Гетерогенное горение;

Горение взрывчатых веществ.

По подготовленности горючей смеси:

Диффузионное горение (пожар);

Кинетическое горение (взрыв).

По динамике фронта пламени:

Стационарное;

Нестационарное.

По характеру движения газов:

Ламинарное;

Турбулентное.

По степени сгорания горючего вещества:

Неполное.

По скорости распространения пламени:

Нормальное;

Дефлаграционное;

Детонационное.

Рассмотрим подробнее эти виды.

4.1. Горение газообразных, жидких и твердых веществ.

В зависимости от агрегатного состояния горючего вещества различают горение газов, жидкостей, пылевидных и компактных твердых веществ.

Согласно ГОСТ 12.1.044-89:

1. Газы – это вещества, критическая температура которых менее 50 о С. Т кр – это минимальная температура нагрева 1 моля вещества в закрытом со-суде, при котором оно полностью превращается в пар (см. § 2.3).

2. Жидкости – это вещества с температурой плавления (каплепадения) менее 50 о С (см. § 2.5).

3. Твердые вещества – это вещества с температурой плавления (капле-падения) более 50 0 С.

4. Пыли – это измельченные твердые вещества с размером частиц менее 0,85 мм.

Зона, в которой происходит химическая реакция в горючей смеси, т.е. горение, называется фронтом пламени.

Рассмотрим процессы горения в воздушной среде на примерах.

Горение газов в газовой горелке. Тут наблюдаются 3 зоны пламени (рис. 12.):

Рис. 12. Схема горения газа: 1 – прозрач-ный конус – это исходный нагревается газ (до температуры самовоспламенения); 2 – светящаяся зона фронта пламени; 3 – про-дукты сгорания (бывают почти невидимы при полном сгорании газов и, особенно при горении водорода, когда не образуется са-жа).

Ширина фронта пламени в газовых смесях составляет десятки доли миллиметра.

Горение жидкостей в открытом сосуде. При горении в открытом со-суде имеются 4 зоны (рис. 13):

Рис. 13. Горение жидкости: 1 – жид-кость; 2 – пары жидкости (темные участки); 3 – фронт пламени; 4 – про-дукты горения (дым).

Ширина фронта пламени в этом случае больше, т.е. реакция протекает медленнее.

Горение плавящихся твердых веществ. Рассмотрим горение свечи. В данном случае наблюдается 6 зон (рис. 14):

Рис. 14. Горение свечи: 1 – твердый воск; 2 – расплав-ленный (жидкий) воск; 3 – темный прозрачный слой паров; 4 – фронт пламени; 5 – продукты горения (дым); 6 – фитиль.


Горящий фитиль служит для стабилизации горения. В него впитывается жидкость, поднимается по нему, испаряется и горит. Ширина фронта пламе-ни увеличивается, что увеличивает площадь светимости, так как используют-ся более сложные углеводороды, которые, испаряясь, распадаются, а потом уже вступают в реакцию.

Горение неплавящихся твердых веществ. Этот вид горения рассмот-рим на примере горения спички и сигареты (рис. 15 и 16).

Здесь также имеется 5 участков:

Рис. 15. Горение спички: 1 – свежая древесина; 2 – обуг-ленная древесина; 3 – газы (газифицированные или испа-рившиеся летучие вещества) - это темноватая прозрачная зона; 4 – фронт пламени; 5 – продукты сгорания (дым).


Видно, что обгоревший участок спички намного тоньше и имеет чер-ный цвет. Это значит, что часть спички обуглилась, т.е. осталась нелетучая часть, а летучая часть испарилась и сгорела. Скорость горения угля значи-тельно медленнее, чем газов, поэтому он не успевает полностью выгореть.

Рис.16. Горение сигареты: 1 – исходная табач-ная смесь; 2 – тлеющий участок без фронта пламени; 3 – дым, т.е. продукт сгоревших час-тиц; 4 – втягиваемый в легкие дым, который представляет собой в основном газифицирован-ные продукты; 5 – смола, сконденсировавшаяся на фильтре.

Беспламенное термоокислительное разложение вещества называется тлением. Оно возникает при недостаточной диффузии кислорода в зону го-рения и может протекать даже при очень малом его количестве (1-2%). Дым имеет сизый, а не черный цвет. Значит в нем больше газифицированных, а не сгоревших веществ.

Поверхность пепла почти белая. Значит, при достаточном поступлении кислорода происходит полное сгорание. Но внутри и на границе горящего слоя со свежими – черное вещество. Это свидетельствует о неполном сгора-нии обугленных частиц. Кстати, на фильтре конденсируются пары улету-чившихся смолистых веществ.

Подобный вид горения наблюдается при горении кокса, т.е. угля, из ко-торого удалены летучие вещества (газы, смолы), или графита.

Таким образом, процесс горения газов, жидкостей и большинства твер-дых веществ протекает в газообразном виде и сопровождается пламенем. Не-которые твердые вещества, в том числе имеющие склонность к самовозгора-нию, горят в виде тления на поверхности и внутри материала.

Горение пылевидных веществ. Горение слоя пыли происходит так же, как и в компактном состоянии, только скорость горения возрастает из-за увеличения поверхности контакта с воздухом.

Горение пылевидных веществ в виде аэровзвеси (пылевого облака) мо-жет протекать в виде искр, т.е. горения отдельных частиц, в случае малого содержания летучих веществ, не способных при испарении образовать доста-точное количество газов для единого фронта пламени.

Если образуется достаточное количество газифицированных летучих веществ, то возникает пламенное горение.

Горение взрывчатых веществ. К данному виду относится горение взрывчатки и пороха, так называемых конденсированных веществ, в которых уже находится химически или механически связанные горючее и окислитель. Например: у тринитротолуола (тротила) C 7 H 5 O 6 N 3 ×C 7 H 5 ×3NO 2 окислителями служат O 2 и NO 2 ; в составе пороха – сера, селитра, уголь; в составе само-дельной взрывчатки алюминиевая пудра и аммиачная селитра, связующее – соляровое масло.

4.2. Гомогенное и гетерогенное горение.

Исходя из рассмотренных примеров, в зависимости от агрегатного со-стояния смеси горючего и окислителя, т.е. от количества фаз в смеси, разли-чают:

1. Гомогенное горение газов и паров горючих веществ в среде газооб-разного окислителя. Таким образом, реакция горения протекает в системе, состоящей из одной фазы (агрегатного состояния).

2. Гетерогенное горение твердых горючих веществ в среде газообраз-ного окислителя. В этом случае реакция протекает на поверхности раздела фаз, в то время как гомогенная реакция идет во всем объеме.

Это горение металлов, графита, т.е. практически нелетучих материалов. Многие газовые реакции имеют гомогенно-гетерогенную природу, когда возможность протекания гомогенной реакции обусловлена происхождением одновременно гетерогенной реакции.

Горение всех жидких и многих твердых веществ, из которых выделяя-ются пары или газы (летучие вещества) протекает в газовой фазе. Твердая и жидкая фазы играют роль резервуаров реагирующих продуктов.

Например, гетерогенная реакция самовозгорания угля переходит в го-могенную фазу горения летучих веществ. Коксовый остаток горит гетероген-но.

4.3. Диффузионное и кинетическое горение.

По степени подготовки горючей смеси различают диффузионное и ки-нетическое горение.

Рассмотренные виды горения (кроме взрывчатки) относятся к диффу-зионному горению. Пламя, т.е. зона горения смеси горючего с воздухом, для обеспечения устойчивости должна постоянно подпитываться горючим и ки-слородом воздуха. Поступление горючего газа зависит только от скорости его подачи в зону горения. Скорость поступления горючей жидкости зависит от интенсивности ее испарения, т.е. от давления паров над поверхностью жидкости, а, следовательно, от температуры жидкости. Температурой вос-пламенения называется наименьшая температура жидкости, при которой пламя над ее поверхностью не погаснет.

Горение твердых веществ отличается от горения газов наличием стадии разложения и газификации с последующим воспламенением летучих продук-тов пиролиза.

Пиролиз – это нагрев органических веществ до высоких температур без доступа воздуха. При этом происходит разложение, или расщепление, сложных соединений на более простые (коксование угля, крекинг нефти, су-хая перегонка дерева). Поэтому сгорание твердого горючего вещества в про-дукт горения не сосредоточено только в зоне пламени, а имеет многостадий-ный характер.

Нагрев твердой фазы вызывает разложение и выделение газов, которые воспламеняются и сгорают. Тепло от факела нагревает твердую фазу, вызы-вая ее газификацию и процесс повторяется, таким образом поддерживая го-рение.

Модель горения твердого вещества предполагает наличие следующих фаз (рис. 17):

Рис. 17. Модель горения

твердого вещества.

Прогрева твердой фазы. У плавящихся веществ в этой зоне происхо-дит плавление. Толщина зоны зависит от температуры проводности вещест-ва;

Пиролиза, или реакционной зоны в твердой фазе, в которой образу-ются газообразные горючие вещества;

Предпламенной в газовой фазе, в которой образуется смесь с окисли-телем;

Пламени, или реакционной зоны в газовой фазе, в которой превраще-ние продуктов пиролиза в газообразные продукты горения;

Продуктов горения.

Скорость подачи кислорода в зону горения зависит от его диффузии через продукт горения.

В общем, поскольку скорость химической реакции в зоне горения в рассматриваемых видах горения зависти от скорости поступления реаги-рующих компонентов и поверхности пламени путем молекулярной или кине-тической диффузии, этот вид горения и называют диффузионным .

Структура пламени диффузионного горения состоит из трех зон (рис.18):

В 1 зоне находятся газы или пары. Горение в этой зоне не происходит. Температура не превышает 500 0 С. Происходит разложение, пиролиз летучих и нагрев до температуры самовоспламенения.

Рис. 18. Структура пламени.

Во 2 зоне образуется смесь паров (газов) с кислородом воздуха и про-исходит неполное сгорание до СО с частичным восстановлением до углерода (мало кислорода):

C n H m + O 2 → CO + CO 2 + Н 2 О;

В 3 внешней зоне происходит полное сгорание продуктов второй зоны и наблюдается максимальная температура пламени:

2CO+O 2 =2CO 2 ;

Высота пламени пропорциональна коэффициенту диффузии и скорости потока газов и обратно пропорциональна плотности газа.

Все виды диффузионного горения присущи пожарам.

Кинетическим горением называется горение заранее перемешанных горючего газа, пара или пыли с окислителем. В этом случае скорость горения зависит только от физико-химических свойств горючей смеси (теплопровод-ности, теплоемкости, турбулентности, концентрации веществ, давления и т.п.). Поэтому скорость горения резко возрастает. Такой вид горения присущ взрывам.

В данном случае при поджигании горючей смеси в какой-либо точке фронт пламени движется от продуктов сгорания в свежую смесь. Таким об-разом, пламя при кинетическом горении чаще всего нестационарно (рис. 19).

Рис. 19. Схема распространения пламени в горючей смеси: - источник зажигания; - направления движе-ния фронта пламени.

Хотя, если предварительно перемешать горючий газ с воздухом и подать в горелку, то при поджигании образуется стационарное пламя, при условии, что скорость подачи смеси будет равна скорости распространения пламени.

Если скорость подачи газов увеличить, то пламя отрывается от горелки и может погаснуть. А если скорость уменьшить, то пламя втянется во внутрь горелки с возможным взрывом.

По степени сгорания , т.е. полноты протекания реакции горения до ко-нечных продуктов, горение бывает полным и неполным .

Так в зоне 2 (рис.18) горение неполное, т.к. недостаточно поступает ки-слород, который частично расходуется в 3 зоне, и образуются промежуточ-ные продукты. Последние догорают в 3 зоне, где кислорода больше, до пол-ного сгорания. Наличие сажи в дыму говорит о неполном горении.

Другой пример: при недостатке кислорода углерод сгорает до угарного газа:

Если добавить O, то реакция идет до конца:

2СО+O 2 =2СО 2 .

Скорость горения зависит от характера движения газов. Поэтому раз-личают ламинарное и турбулентное горение.

Так, примером ламинарного горения может служить пламя свечи в не-подвижном воздухе. При ламинарном горении слои газов текут параллель-но, не завихряясь.

Турбулентное горение – вихревое движение газов, при котором интен-сивно перемешиваются сгорающие газы, и фронт пламени размывается. Гра-ницей между этими видами служит критерий Рейнольдса, который характе-ризует соотношение между силами инерции и силами трения в потоке:

где: u - скорость газового потока;

n - кинетическая вязкость;

l – характерный линейный размер.

Число Рейнольдса, при котором происходит переход ламинарного по-граничного слоя в турбулентный называется критическим Re кр, Re кр ~ 2320.

Турбулентность увеличивает скорость горения из-за более интенсивной передачи тепла от продуктов горения в свежую смесь.

4.4. Нормальное горение.

В зависимости от скорости распространения пламени при кинетиче-ском горении может реализоваться либо нормальное горение (в пределах не-скольких м/с), либо взрывное дефлаграционное (десятки м/с), либо детона-ционное (тысячи м/с). Эти виды горения могут переходить друг в друга.

Нормальное горение – это горение, при котором распространение пламени происходит при отсутствии внешних возмущений (турбулентности или изменения давления газов). Оно зависит только от природы горючего вещества, т.е. теплового эффекта, коэффициентов теплопроводности и диф-фузии. Поэтому является физической константой смеси определенного со-става. В этом случае обычно скорость горения составляет 0,3-3,0 м/с. Нор-мальным горение названо потому, что вектор скорости его распространения перпендикулярен фронту пламени.

4.5. Дефлаграционное (взрывное) горение.

Нормальное горение неустойчиво и в закрытом пространстве склонно к самоускорению. Причиной этому является искривление фронта пламени вследствие трения газа о стенки сосуда и изменения давления в смеси.

Рассмотрим процесс распространения пламени в трубе (рис. 20).

Рис. 20. Схема возникнове-ния взрывного горения.

Сначала у открытого конца трубы пламя распространяется с нормаль-ной скоростью, т.к. продукты горения свободно расширяются и выходят на-ружу. Давление смеси не изменяется. Длительность равномерного распро-странения пламени зависит от диаметра трубы, рода горючего и его концен-трации.

По мере продвижения фронта пламени внутрь трубы продукты реак-ции, имея больший объем по сравнению с исходной смесью, не успевают вы-ходить наружу и их давление возрастает. Это давление начинает давить во все стороны, и поэтому впереди фронта пламени исходная смесь начинает двигаться в сторону распространения пламени. Прилегающие к стенкам слои тормозятся. Наибольшую скорость имеет пламя в центре трубы, меньшую – у стенок (из-за теплоотвода в них). Поэтому фронт пламени вытягивается в сторону распространения пламени, а поверхность его увеличивается. Про-порционально этому увеличивается количество сгораемой смеси в единицу времени, которое влечет за собой возрастание давления, а то в свою очередь – увеличивает скорость движения газа и т.д. Таким образом, происходит ла-винообразное повышение скорости распространения пламени до сотен мет-ров в секунду.

Процесс распространения пламени по горючей газовой смеси, при ко-тором самоускоряющаяся реакция горения распространяется вследствие ра-зогрева путем теплопроводности от соседнего слоя продуктов реакции, назы-вается дефлаграцией . Обычно скорости дефлаграционного горения дозвуко-вые, т.е. менее 333 м/с.

4.6. Детонационное горение .

Если рассматривать сгорание горючей смеси послойно, то в результате термического расширения объема продуктов сгорания каждый раз впереди фронта пламени возникает волна сжатия. Каждая последующая волна, двига-ясь по более плотной среде, догоняет предыдущую и накладывается на нее. Постепенно эти волны соединяются в одну ударную волну (рис. 21).

Рис. 21. Схема образования де-тонационной волны: Р о < Р 1 < Р 2 < Р 3 < Р 4 < Р 5 < Р 6 < Р 7 ; 1-7 – нарастание давления в слоях с 1-го по 7-ой.

В ударной волне в результате адиабатического сжатия мгновенно уве-личивается плотность газов и повышается температура до Т 0 самовоспламе-нения. В результате происходит зажигание горючей смеси ударной волной и возникает детонация – распространение горения путем воспламенения удар-ной волной. Детонационная волна не гаснет, т.к. подпитывается ударными волнами от движущегося вслед за ней пламени.

Особенность детонации – она происходит с определенной для каждого состава смеси сверхзвуковой скоростью 1000-9000 м/с, поэтому является фи-зической константой смеси. Она зависит только от калорийности горючей смеси и теплоемкости продуктов сгорания.

Встреча ударной волны с препятствием ведет к образованию отражен-ной ударной волны и еще большему давлению.

Детонация – самый опасный вид распространения пламени, т.к. имеет максимальную мощность взрыва (N=A/t) и огромную скорость. Практически «обезвредить» детонацию можно лишь на преддетонационном участке, т.е. на расстоянии от точки зажигания до места возникновения детонационного горения. Для газов длина этого участка от 1 до 10 м.

Гомогенное и гетерогенное горение.

Исходя из рассмотренных примеров, в зависимости от агрегатного со-стояния смеси горючего и окислителя, т.е. от количества фаз в смеси, разли-чают:

1. Гомогенное горение газов и паров горючих веществ в среде газооб-разного окислителя. Таким образом, реакция горения протекает в системе, состоящей из одной фазы (агрегатного состояния).

2. Гетерогенное горение твердых горючих веществ в среде газообраз-ного окислителя. В этом случае реакция протекает на поверхности раздела фаз, в то время как гомогенная реакция идет во всем объеме.

Это горение металлов, графита, т.е. практически нелетучих материалов. Многие газовые реакции имеют гомогенно-гетерогенную природу, когда возможность протекания гомогенной реакции обусловлена происхождением одновременно гетерогенной реакции.

Горение всех жидких и многих твердых веществ, из которых выделяя-ются пары или газы (летучие вещества) протекает в газовой фазе. Твердая и жидкая фазы играют роль резервуаров реагирующих продуктов.

Например, гетерогенная реакция самовозгорания угля переходит в го-могенную фазу горения летучих веществ. Коксовый остаток горит гетероген-но.

По степени подготовки горючей смеси различают диффузионное и ки-нетическое горение.

Рассмотренные виды горения (кроме взрывчатки) относятся к диффу-зионному горению. Пламя, т.е. зона горения смеси горючего с воздухом, для обеспечения устойчивости должна постоянно подпитываться горючим и ки-слородом воздуха. Поступление горючего газа зависит только от скорости его подачи в зону горения. Скорость поступления горючей жидкости зависит от интенсивности ее испарения, т.е. от давления паров над поверхностью жидкости, а, следовательно, от температуры жидкости. Температурой вос-пламенения называется наименьшая температура жидкости, при которой пламя над ее поверхностью не погаснет.

Горение твердых веществ отличается от горения газов наличием стадии разложения и газификации с последующим воспламенением летучих продук-тов пиролиза.

Пиролиз – это нагрев органических веществ до высоких температур без доступа воздуха. При этом происходит разложение, или расщепление, сложных соединений на более простые (коксование угля, крекинг нефти, су-хая перегонка дерева). Поэтому сгорание твердого горючего вещества в про-дукт горения не сосредоточено только в зоне пламени, а имеет многостадий-ный характер.

Нагрев твердой фазы вызывает разложение и выделение газов, которые воспламеняются и сгорают. Тепло от факела нагревает твердую фазу, вызы-вая ее газификацию и процесс повторяется, таким образом поддерживая го-рение.



Модель горения твердого вещества предполагает наличие следующих фаз (рис. 17):

Рис. 17. Модель горения

твердого вещества.

Прогрева твердой фазы. У плавящихся веществ в этой зоне происхо-дит плавление. Толщина зоны зависит от температуры проводности вещест-ва;

Пиролиза, или реакционной зоны в твердой фазе, в которой образу-ются газообразные горючие вещества;

Предпламенной в газовой фазе, в которой образуется смесь с окисли-телем;

Пламени, или реакционной зоны в газовой фазе, в которой превраще-ние продуктов пиролиза в газообразные продукты горения;

Продуктов горения.

Скорость подачи кислорода в зону горения зависит от его диффузии через продукт горения.

В общем, поскольку скорость химической реакции в зоне горения в рассматриваемых видах горения зависти от скорости поступления реаги-рующих компонентов и поверхности пламени путем молекулярной или кине-тической диффузии, этот вид горения и называют диффузионным .

Структура пламени диффузионного горения состоит из трех зон (рис.18):

В 1 зоне находятся газы или пары. Горение в этой зоне не происходит. Температура не превышает 500 0 С. Происходит разложение, пиролиз летучих и нагрев до температуры самовоспламенения.

Рис. 18. Структура пламени.

Во 2 зоне образуется смесь паров (газов) с кислородом воздуха и про-исходит неполное сгорание до СО с частичным восстановлением до углерода (мало кислорода):

C n H m + O 2 → CO + CO 2 + Н 2 О;

В 3 внешней зоне происходит полное сгорание продуктов второй зоны и наблюдается максимальная температура пламени:

2CO+O 2 =2CO 2 ;

Высота пламени пропорциональна коэффициенту диффузии и скорости потока газов и обратно пропорциональна плотности газа.

Все виды диффузионного горения присущи пожарам.

Кинетическим горением называется горение заранее

перемешанных горючего газа, пара или пыли с окислителем. В этом случае скорость горения зависит только от физико-химических свойств горючей смеси (теплопроводности, теплоемкости, турбулентности, концентрации веществ, давления и т.п.). Поэтому скорость горения резко возрастает. Такой вид горения присущ взрывам.

В данном случае при поджигании горючей смеси в какой-либо точке фронт пламени движется от продуктов сгорания в свежую смесь. Таким об-разом, пламя при кинетическом горении чаще всего нестационарно (рис. 19).

Рис. 19. Схема распространения пламени в горючей смеси: - источник зажигания; - направления движе-ния фронта пламени.

Хотя, если предварительно перемешать горючий газ с воздухом и подать в горелку, то при поджигании образуется стационарное пламя, при условии, что скорость подачи смеси будет равна скорости распространения пламени.

Если скорость подачи газов увеличить, то пламя отрывается от горелки и может погаснуть. А если скорость уменьшить, то пламя втянется во внутрь горелки с возможным взрывом.

По степени сгорания , т.е. полноты протекания реакции горения до ко-нечных продуктов, горение бывает полным и неполным .

Так в зоне 2 (рис.18) горение неполное, т.к. недостаточно поступает ки-слород, который частично расходуется в 3 зоне, и образуются промежуточ-ные продукты. Последние догорают в 3 зоне, где кислорода больше, до пол-ного сгорания. Наличие сажи в дыму говорит о неполном горении.

Другой пример: при недостатке кислорода углерод сгорает до угарного газа:

Если добавить O, то реакция идет до конца:

2СО+O 2 =2СО 2 .

Скорость горения зависит от характера движения газов. Поэтому раз-личают ламинарное и турбулентное горение.

Так, примером ламинарного горения может служить пламя свечи в не-подвижном воздухе. При ламинарном горении слои газов текут параллель-но, не завихряясь.

Турбулентное горение – вихревое движение газов, при котором интен-сивно перемешиваются сгорающие газы, и фронт пламени размывается. Гра-ницей между этими видами служит критерий Рейнольдса, который характе-ризует соотношение между силами инерции и силами трения в потоке:

где: u - скорость газового потока;

n - кинетическая вязкость;

l – характерный линейный размер.

Число Рейнольдса, при котором происходит переход ламинарного по-граничного слоя в турбулентный называется критическим Re кр, Re кр ~ 2320.

Турбулентность увеличивает скорость горения из-за более интенсивной передачи тепла от продуктов горения в свежую смесь.