Решение уравнений, неравенств, систем с помощью графиков функций. Визуальный гид (2019). Решение систем линейных неравенств графически

учащийся 10 класса Котовчихин Юрий

Уравнения с модулями ученики начинают изучать уже с 6-го класса, они изучают стандартный метод решения с помощью раскрытия модулей на промежутках знакопостоянства подмодульных выражений. Я выбрал именно эту тему, потому что считаю, что она требует более глубокого и досконального исследования, задачи с модулем вызывают большие трудности у учащихся. В школьной программе встречаются задания, содержащие модуль как задания повышенной сложности и на экзаменах, следовательно, мы должны быть готовы к встречи с таким заданием.

Скачать:

Предварительный просмотр:

Муниципальное образовательное учреждение

Средняя общеобразовательная школа №5

Исследовательская работа на тему:

« Алгебраическое и графическое решение уравнений и неравенств, содержащих модуль »

Работу выполнил:

учащийся 10 класса

Котовчихин Юрий

Руководитель:

Преподаватель математики

Шанта Н.П.

Урюпинск

1.Введение………………………………………………………….3

2.Понятия и определения………………………………………….5

3.Доказательство теорем…………………………………………..6

4.Способы решение уравнений, содержащих модуль…………...7

4.1.Решение при помощи зависимостей между числами a и b, их модулями и квадратами…………………………………………………………12

4.2.Использование геометрической интерпретации модуля для решения уравнений…………………………………………………………..14

4.3.Графики простейших функций, содержащих знак абсолютной величины.

………………………………………………………………………15

4.4.Решение нестандартных уравнения, содержащие модуль….16

5.Заключение……………………………………………………….17

6.Список использованной литературы……………………………18

Цель работы: уравнения с модулями ученики начинают изучать уже с 6-го класса, они изучают стандартный метод решения с помощью раскрытия модулей на промежутках знакопостоянства подмодульных выражений. Я выбрал именно эту тему, потому что считаю, что она требует более глубокого и досконального исследования, задачи с модулем вызывают большие трудности у учащихся. В школьной программе встречаются задания, содержащие модуль как задания повышенной сложности и на экзаменах, следовательно, мы должны быть готовы к встречи с таким заданием.

1. Введение:

Слово "модуль" произошло от латинского слова "modulus", что в переводе означает "мера". Это многозначное слово(омоним), которое имеет множество значений и применяется не только в математике, но и в архитектуре, физике, технике, программировании и других точных науках.

В архитектуре -это исходная единица измерения, устанавливаемая для данного архитектурного сооружения и служащая для выражения кратных соотношений его составных элементов.

В технике -это термин, применяемый в различных областях техники, не имеющий универсального значения и служащий для обозначения различных коэффициентов и величин, например модуль зацепления, модуль упругости и.т.п.

Модуль объемного сжатия (в физике)-отношение нормального напряжения в материале к относительному удлинению.

2. Понятия и определения

Модуль – абсолютное значение – действительного числа А обозначается |A|.

Чтобы глубоко изучать данную тему, необходимо познакомиться с простейшими определениями, которые мне будут необходимы:

Уравнение-это равенство, содержащее переменные.

Уравнение с модулем -это уравнение, содержащие переменную под знаком абсолютной величины(под знаком модуля).

Решить уравнение-это значит найти все его корни, или доказать, что корней нет.

3.Доказательство теорем

Теорема 1. Абсолютная величина действительного числа равна большему из двух чисел a или -a.

Доказательство

1. Если число a положительно, то -a отрицательно, т. е. -a

Например, число 5 положительно, тогда -5 - отрицательно и -5

В этом случае |a| = a, т. е. |a| совпадает с большим из двух чисел a и - a.

2. Если a отрицательно, тогда -a положительно и a

Следствие. Из теоремы следует, что |-a| = |a|.

В самом деле, как, так и равны большему из чисел -a и a, а значит равны между собой.

Теорема 2. Абсолютная величина любого действительного числа a равна арифметическому квадратному корню из А 2 .

В самом деле, если то, по определению модуля числа, будем иметь lАl>0 С другой стороны, при А>0 значит |a| = √A 2

Если a 2

Эта теорема дает возможность при решении некоторых задач заменять |a| на

Геометрически |a| означает расстояние на координатной прямой от точки, изображающей число a, до начала отсчета.

Если то на координатной прямой существует две точки a и -a, равноудаленной от нуля, модули которых равны.

Если a = 0, то на координатной прямой |a| изображается точкой 0

4.Способы решения уравнений, содержащих модуль.

Для решения уравнений, содержащих знак абсолютной величины, мы будем основывается на определении модуля числа и свойствах абсолютной величины числа. Мы решим несколько примеров разными способами и посмотрим, какой из способов окажется проще для решения уравнений, содержащих модуль.

Пример 1. Решим аналитически и графически уравнение |x + 2| = 1.

Решение

Аналитическое решение

1-й способ

Рассуждать будем, исходя из определения модуля. Если выражение, находящееся под модулем неотрицательно, т. е. x + 2 ≥0 , тогда оно "выйдет" из под знака модуля со знаком "плюс" и уравнение примет вид: x + 2 = 1. Если значения выражения под знаком модуля отрицательно, тогда, по определению, оно будет равно: или x + 2=-1

Таким образом, получаем, либо x + 2 = 1, либо x + 2 = -1. Решая полученные уравнения, находим: Х+2=1 или Х+2+-1

Х=-1 Х=3

Ответ: -3;-1.

Теперь можно сделать вывод: если модуль некоторого выражения равен действительному положительному числу a, тогда выражение под модулем равно либо a, либо -а.

Графическое решение

Одним из способов решения уравнений, содержащих модуль является графический способ. Суть этого способа заключается в том, чтобы построить графики данных функций. В случае, если графики пересекутся, точки пересечений данных графиков будут является корнями нашего уравнения. В случае, если графики не пересекутся, мы сможем сделать вывод, что уравнение корней не имеет. Этот способ, вероятно, реже других применяют для решения уравнений, содержащих модуль, так как, во-первых, он занимает достаточно много времени и не всегда рационален, а, во-вторых, результаты, полученные при построении графиков, не всегда являются точными.

Другой способ решения уравнений, содержащих модуль- это способ разбиения числовой прямой на промежутки. В этом случае нам нужно разбить числовую прямую так, что по определению модуля, знак абсолютной величины на данных промежутках можно будет снять. Затем, для каждого из промежутков мы должны будем решить данное уравнение и сделать вывод, относительно получившихся корней(удовлетворяют они нашему промежутку или нет). Корни, удовлетворяющие промежутки и дадут окончательный ответ.

2-й способ

Установим, при каких значениях x, модуль равен нулю: |Х+2|=0 , Х=2

Получим два промежутка, на каждом из которых решим уравнение:

Получим две смешанных системы:

(1) Х+2 0

Х-2=1 Х+2=1

Решим каждую систему:

X=-3 X=-1

Ответ: -3;-1.

Графическое решение

y= |X+2|, y= 1.

Графическое решение

Для решения уравнения графическим способом, надо построить графики функций и

Для построения графика функции, построим график функции - это функция, пересекающая ось OX и ось OY в точках.

Абсциссы точек пересечения графиков функций дадут решения уравнения.

Прямая графика функции y=1 пересеклась с графиком функции y=|x + 2| в точках с координатами (-3; 1) и (-1; 1), следовательно решениями уравнения будут абсциссы точек:

x=-3, x=-1

Ответ: -3;-1

Пример 2. Решить аналитически и графически уравнение 1 + |x| = 0.5.

Решение:

Аналитическое решение

Преобразуем уравнение: 1 + |x| = 0.5

|x| =0.5-1

|x|=-0.5

Понятно, что в этом случае уравнение не имеет решений, так как, по определению, модуль всегда неотрицателен.

Ответ: решений нет.

Графическое решение

Преобразуем уравнение: : 1 + |x| = 0.5

|x| =0.5-1

|x|=-0.5

Графиком функции являются лучи - биссектрисы 1-го и 2-го координатных углов. Графиком функции является прямая, параллельная оси OX и проходящая через точку -0,5 на оси OY.

Графики не пересекаются, значит уравнение не имеет решений.

Ответ: нет решений.

Пример 3. Решите аналитически и графически уравнение |-x + 2| = 2x + 1.

Решение:

Аналитическое решение

1-й способ

Прежде следует установить область допустимых значений переменной. Возникает естественный вопрос, почему в предыдущих примерах не было необходимости делать этого, а сейчас она возникла.

Дело в том, что в этом примере в левой части уравнения модуль некоторого выражения, а в правой части не число, а выражение с переменной, - именно это важное обстоятельство отличает данный пример от предыдущих.

Поскольку в левой части - модуль, а в правой части, выражение, содержащее переменную, необходимо потребовать, чтобы это выражение было неотрицательным, т. е. Таким образом, область допустимых

значений модуля

Теперь можно рассуждать также, как и в примере 1, когда в правой части равенства находилось положительной число. Получим две смешанных системы:

(1) -X+2≥0 и (2) -X+2

X+2=2X+1; X-2=2X+1

Решим каждую систему:

(1) входит в промежуток и является корнем уравнения.

X≤2

X=⅓

(2) X>2

X=-3

X = -3 не входит в промежуток и не является корнем уравнения.

Ответ: ⅓.

4.1.Решение при помощи зависимостей между числами a и b, их модулями и квадратами этих чисел.

Помимо приведенных мною выше способов существует определенная равносильность, между числами и модулями данных чисел, а также между квадратами и модулями данных чисел:

|a|=|b| a=b или a=-b

A2=b2 a=b или a=-b

Отсюда в свою очередь получим, что

|a|=|b| a 2 =b 2

Пример 4. Решим уравнение |x + 1|=|2x - 5| двумя различными способами.

1.Учитывая соотношение (1), получим:

X + 1=2x - 5 или x + 1=-2x + 5

x - 2x=-5 - 1 x + 2x=5 - 1

X=-6|(:1) 3x=4

X=6 x=11/3

Корень первого уравнения x=6, корень второго уравнения x=11/3

Таким образом корни исходного уравнения x 1 =6, x 2 =11/3

2. В силу соотношения (2), получим

(x + 1)2=(2x - 5)2, или x2 + 2x + 1=4x2 - 20x + 25

X2 - 4x2 +2x+1 + 20x - 25=0

3x2 + 22x - 24=0|(:-1)

3x2 - 22x + 24=0

D/4=121-3 24=121 - 72=49>0 ==>уравнение имеет 2 различных корня.

x 1 =(11 - 7)/3=11/3

x 2 =(11 + 7)/3=6

Как показывает решение, корнями данного уравнения также являются числа 11/3 и 6

Ответ: x 1 =6, x 2 =11/3

Пример 5. Решим уравнение (2x + 3) 2 =(x - 1) 2 .

Учитывая соотношение (2), получим, что |2x + 3|=|x - 1|, откуда по образцу предыдущего примера(и по соотношению (1)):

2х + 3=х - 1 или 2х + 3=-х + 1

2х - х=-1 - 3 2х+ х=1 - 3

Х=-4 х=-0,(6)

Таким образом корнями уравнения являются х1=-4, и х2=-0,(6)

Ответ: х1=-4, х 2 =0,(6)

Пример 6. Решим уравнение |x - 6|=|x2 - 5x + 9|

Пользуясь соотношением, получим:

х - 6=х2 - 5х + 9 или х - 6 = -(х2 - 5х + 9)

Х2 + 5х + х - 6 - 9=0 |(-1) x - 6=-x2 + 5x - 9

x2 - 6x + 15=0 x2 - 4x + 3=0

D=36 - 4 15=36 - 60= -24 D=16 - 4 3=4 >0==>2 р.к.

==> корней нет.

X 1 =(4- 2) /2=1

X 2 =(4 + 2) /2=3

Проверка: |1 - 6|=|12 - 5 1 + 9| |3 - 6|=|32 - 5 3 + 9|

5 = 5(И) 3 = |9 - 15 + 9|

3 = 3(И)

Ответ: x 1 =1; x 2 =3

4.2.Использование геометрической интерпретации модуля для решения уравнений.

Геометрический смысл модуля разности величин -это расстояние между ними. Например, геометрический смысл выражения |x - a | -длина отрезка координатной оси, соединяющей точки с абсциссами а и х. Перевод алгебраической задачи на геометрический язык часто позволяет избежать громоздких решений.

Пример7. Решим уравнение |x - 1| + |x - 2|=1 с использованием геометрической интерпретации модуля.

Будем рассуждать следующим образом: исходя из геометрической интерпретации модуля, левая часть уравнения представляет собой сумму расстояний от некоторой точки абсцисс х до двух фиксированных точек с абсциссами 1 и 2. Тогда очевидно, что все точки с абсциссами из отрезка обладают требуемым свойством, а точки, расположенные вне этого отрезка- нет. Отсюда ответ: множеством решений уравнения является отрезок .

Ответ:

Пример8. Решим уравнение |x - 1| - |x - 2|=1 1 с использованием геометрической интерпретации модуля.

Будем рассуждать аналогично предыдущему примеру, при этом получим, что разность расстояний до точек с абсциссами 1 и 2 равна единице только для точек, расположенных на координатной оси правее числа 2. Следовательно решением данного уравнения будет является не отрезок, заключенный между точками 1 и 2, а луч, выходящий из точки 2, и направленный в положительном направлении оси ОХ.

Ответ: , где х 1 и х 2 – абсциссы точек пересечения графиков, будет решением исходно­го неравенства..gif" width="68 height=47" height="47">, то

Когда «полупарабола» и прямая пересекаются только в одной точке (это соответствует случаю а > 1), то решением будет отрезок [-а ; х 2"], где х 2" – больший из корней х 1 и х 2 (положение IV).

Пример 4 ..gif" width="85" height="29 src=">.gif" width="75" height="20 src=">. Отсюда получаем .

Рассмотрим функции и . Среди них лишь одна задает семейство кривых. Теперь мы видим, что произведенная замена приносит несомненную пользу. Парал­лельно отметим, что в предыдущей задаче аналогичной заменой можно заставить двигаться не «полупараболу», а прямую. Обратимся к рис. 4. Очевидно, если абсцисса вершины «полупараболы» больше единицы, т. е. –3а > 1, , то уравнение корней не имеет..gif" width="89" height="29"> и име­ют разный характер моно­тонности.

Ответ. Если то уравнение имеет один корень; если https://pandia.ru/text/78/074/images/image039_10.gif" width="141" height="81 src=">

имеет решения.

Решение. Ясно, что прямые семейства https://pandia.ru/text/78/074/images/image041_12.gif" width="61" height="52">..jpg" width="259" height="155">

Значение k1 найдем, подставив в первое уравнение системы пару (0;0). Отсюда k 1 =-1/4. Значение k 2 получим, потребовав от системы

https://pandia.ru/text/78/074/images/image045_12.gif" width="151" height="47"> при k > 0 иметь один корень. Отсюда k2 = 1/4.

Ответ. .

Сделаем одно замечание. В некоторых примерах этого пункта нам придется решать стандартную задачу: для прямой семейства находить ее угловой коэффициент, соответствующий моменту касания с кривой. Покажем, как это сделать в общем виде при помощи производной.

Если (х0 ; y 0) = центр поворота, то координаты 1; у 1) точки касания с кривой у = f (х) можно найти, решив систему

Искомый угловой коэффициент k равен .

Пример 6 . При каких значениях параметра уравнение имеет единственное решение?

Решение ..gif" width="160" height="29 src=">..gif" width="237" height="33">, дуга АВ.

Все лучи проходящие между ОА и ОВ пересекают дугу АВ в одной точке, также в одной точке пересекают дугу АВ ОВ и ОМ (касательная)..gif" width="16" height="48 src=">. Угловой коэффициент касательной равен . Легко находится из системы

Итак, прямые семейства https://pandia.ru/text/78/074/images/image059_7.gif" width="139" height="52">.

Ответ . .

Пример 7 ..gif" width="160" height="25 src="> имеет решение?

Решение ..gif" width="61" height="24 src="> и убывает на . Точка - является точкой максимума.

Функция же - это семейство прямых, проходящих через точку https://pandia.ru/text/78/074/images/image062_7.gif" width="153" height="28"> является дуга АВ. Прямые , которые будут находиться между прямыми ОА и ОВ, удовлетворяют условию задачи..gif" width="17" height="47 src=">.

Ответ ..gif" width="15" height="20">решений нет.

1.3. Гомотетия. Сжатие к прямой.

Пример 8. Сколько решений имеет система

https://pandia.ru/text/78/074/images/image073_1.gif" width="41" height="20 src="> система решений не имеет. При фиксированном а > 0 графиком первого уравнения является квадрат с вершинами (а ; 0), (0;-а ), (-a ;0), (0;а). Таким образом, членами семейства являются гомотетичные квадраты (центр гомотетии – точка О(0; 0)).

Обратимся к рис. 8..gif" width="80" height="25"> каж­дая сторона квадрата име­ет две общие точки с ок­ружностью, а значит, сис­тема будет иметь восемь решений. При окружность окажется вписанной в квадрат, т. е. решений станет опять четыре. Очевидно при система решений не имеет.

Ответ. Если а < 1 или https://pandia.ru/text/78/074/images/image077_1.gif" width="56" height="25 src=">, то решений четыре; если , то решений восемь.

Пример 9 . Найти все значения параметра , при каждом из которых уравнение https://pandia.ru/text/78/074/images/image081_0.gif" width="181" height="29 src=">. Рассмотрим функцию ..jpg" width="195" height="162">

Число корней будет соответствовать числу 8 тогда, когда радиус полуокружности будет больше и меньше , то есть . Заметим, что есть .

Ответ . или .

1.4. Две прямые на плоскости

По существу, в основе идеи решения задач настоящего пункта лежит вопрос об исследовании взаимного расположения двух прямых: и . Несложно показать решение этой задачи в общем виде. Мы же обратимся непосредственно к конкретным характерным примерам, что, на наш взгляд, не нанесет ущерба общей стороне вопроса.

Пример 10. При каких a и b система

https://pandia.ru/text/78/074/images/image094_0.gif" width="160" height="25 src=">..gif" width="67" height="24 src=">, т..gif" width="116" height="55">

Неравенство системы задает полуплоскость с границей у = – 1 (рис. 10). Легко сооб­разить, что полученная система имеет решение, если прямая ах + by = 5 пересекает границу полуплоскости или, будучи па­раллельной ей, лежит в полупло­скости у 2х + 1 < 0.

Начнем со случая b = 0. Тогда, казалось бы, урав­нение ах + by = 5 задает верти­кальную прямую, которая оче­видно пересекает прямую у = 2х – 1. Однако это утверж­дение справедливо лишь при ..gif" width="43" height="20 src="> система имеет решения..gif" width="99" height="48">. В этом случае условие пересечения прямых достигается при , т. е. ..gif" width="52" height="48">.gif" width="41" height="20"> и , или и , или и https://pandia.ru/text/78/074/images/image109_0.gif" width="69" height="24 src=">.

− В координатной плоскости xOa строим график функции .

− Рассмотрим прямые и выделим те промежутки оси Oa, на которых эти прямые удовлетворяют следующим условиям: a) не пересекает график функции https://pandia.ru/text/78/074/images/image109_0.gif" width="69" height="24"> в одной точке, в) в двух точках, г) в трех точках и так далее.

− Если поставлена задача найти значения x, то выражаем x через a для каждого из найденных промежутков значения a в отдельности.

Взгляд на параметр как на равноправную переменную находит свое отражение в графических методах..jpg" width="242" height="182">

Ответ. а = 0 или а = 1.

ЗАКЛЮЧЕНИЕ

Мы надеемся, что разобранные задачи достаточно убедитель­но демонстрируют эффективность предложенных методов. Одна­ко, к сожалению, сфера применения этих методов ограничена трудностями, с которыми можно столкнуться при построении графического образа. А так ли это плохо? По-видимому, нет. Ведь при таком подходе в большой степени теряется главная дидактическая ценность задач с параметрами как модели миниатюрного исследования. Впрочем, приведенные соображения адресованы учителям, а для абитуриентов вполне приемлема формула: цель оправдывает средства. Более того возьмем на себя смелость сказать, что в немалом числе вузов составители конкурсных задач с параметрами идут по пути от картинки к условию.

В этих задачах обсуждались те возможности решения задач с пара­метром, которые открываются нам при изображении на листе бумаге графиков функций, входящих в левую и правую части уравнений или неравенств. В связи с тем, что параметр может принимать произ­вольные значения, один или оба из изображаемых графиков движутся определенным образом на плоскости. Можно говорить о том, что получается целое семейство графиков, соответствующих различным значениям параметра.

Решительно подчеркнем две детали.

Во-первых, речь не идет о «графическом» решении. Все значения, координаты, корни вычисляются строго, аналитически, как решения соответствующих уравнений, систем. Это же относится к случаям касания или пересечения графиков. Они определяются не на глазок, а с помощью дискриминантов, производных и других доступных Вам инструментов. Картинка лишь дает путь решения.

Во-вторых, даже если Вы не найдете никакого пути решения задачи, связанного изображенными графиками, Ваше представление о задаче значительно расширится, Вы получите информацию для самопроверки и шансы на успех значительно возрастут. Точно представляя себе, что происходит в задаче при различных значениях параметра, Вы, возможно, найдет правильный алгоритм решения.

Поэтому эти слова завершим настоятельным предло­жением: если в хоть мало-мальски сложной задаче встречаются функции, графики которых Вы рисовать умеете, обязательно сделайте это, не пожалеете.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Черкасов, : Справочник для старшеклассников и поступающих в вузы [Текст] / , . – М.: АСТ-ПРЕСС, 2001. – 576 с.

2. Горштейн, с параметрами [Текст]: 3-е издание, дополненное и переработанное / , . – М.: Илекса, Харьков: Гимназия, 1999. – 336 с.

Пусть f(x,y) и g(x, y) - два выражения с переменными х и у и областью определения Х . Тогда неравенства вида f(x, y) > g(x, y) или f(x, y) < g(x, y) называется неравенством с двумя переменными .


Значение переменных х, у из множества Х , при которых неравенство обращается в истинное числовое неравенство, называется его решением и обозначается (x, y) . Решить неравенство - это значит найти множество таких пар.


Если каждой паре чисел (x, y) из множества решений неравенства поставить в соответствие точку М(x, y) , получим множество точек на плоскости, задаваемое этим неравенством. Его называют графиком данного неравенства . График неравенства обычно является областью на плоскости.


Чтобы изобразить множество решений неравенства f(x, y) > g(x, y) , поступают следующим образом. Сначала заменяют знак неравенства знаком равенства и находят линию, имеющую уравнение f(x,y) = g(x,y) . Эта линия делит плоскость на несколько частей. После этого достаточно взять в каждой части по одной точке и проверить, выполняется ли в этой точке неравенство f(x, y) > g(x, y) . Если оно выполняется в этой точке, то оно будет выполняться и во всей части, где лежит эта точка. Объединяя такие части, получаем множество решений.


Задача. y > x .


Решение. Сначала заменим знак неравенства знаком равенства и построим в прямоугольной системе координат линию, имеющую уравнение y = x .


Эта линия делит плоскость на две части. После этого возьмем в каждой части по одной точке и проверим, выполняется ли в этой точке неравенство y > x .


Задача. Решить графически неравенство
х 2 + у 2 £ 25.
















Рис. 18.



Решение. Сначала заменим знак неравенства знаком равенства и проведем линию х 2 + у 2 = 25. Это окружность с центром в начале координат и радиусом 5. Полученная окружность делит плоскость на две части. Проверяя выполнимость неравенства х 2 + у 2 £ 25 в каждой части, получаем, что графиком является множество точек окружности и части плоскости внутри окружности.

Пусть даны два неравенства f 1(x, y) > g 1(x, y) и f 2(x, y) > g 2(x, y) .

Системы совокупностей неравенств с двумя переменными

Система неравенств представляет собой конъюнкцию этих неравенств. Решением системы является всякое значение (x, y) , которое обращает каждое из неравенств в истинное числовое неравенство. Множество решений системы неравенств есть пересечение множеств решений неравенств, образующих данную систему.


Совокупность неравенств представляет собой дизъюнкцию этих неравенств. Решением совокупности является всякое значение (x, y) , которое обращает в истинное числовое неравенство хотя бы одно из неравенств совокупности. Множество решений совокупности есть объединение множеств решений неравенств, образующих совокупность.


Задача. Решить графически систему неравенств


Решение. у = х и х 2 + у 2 = 25. Решаем каждое неравенство системы.


Графиком системы будет множество точек плоскости, являющихся пересечением (двойная штриховка) множеств решений первого и второго неравенств.


Задача. Решить графически совокупность неравенств



















Решение. Сначала заменяем знак неравенства знаком равенства и проводим в одной системе координат линии у = х + 4 и х 2 + у 2 = 16. Решаем каждое неравенство совокупности. Графиком совокупности будет множество точек плоскости, являющихся объединением множеств решений первого и второго неравенств.

Упражнения для самостоятельной работы


1. Решите графически неравенства: а) у > 2x ; б) у < 2x + 3;


в) x 2 + y 2 > 9; г) x 2 + y 2 £ 4.


2. Решите графически системы неравенств:


а) в)

График линейного или квадратного неравенства строится так же, как строится график любой функции (уравнения). Разница заключается в том, что неравенство подразумевает наличие множества решений, поэтому график неравенства представляет собой не просто точку на числовой прямой или линию на координатной плоскости. С помощью математических операций и знака неравенства можно определить множество решений неравенства.

Шаги

Графическое изображение линейного неравенства на числовой прямой

  1. Решите неравенство. Для этого изолируйте переменную при помощи тех же алгебраических приемов, которыми пользуетесь при решении любого уравнения. Помните, что при умножении или делении неравенства на отрицательное число (или член), поменяйте знак неравенства на противоположный.

    • Например, дано неравенство 3 y + 9 > 12 {\displaystyle 3y+9>12} . Чтобы изолировать переменную, из обеих сторон неравенства вычтите 9, а затем обе стороны разделите на 3:
      3 y + 9 > 12 {\displaystyle 3y+9>12}
      3 y + 9 − 9 > 12 − 9 {\displaystyle 3y+9-9>12-9}
      3 y > 3 {\displaystyle 3y>3}
      3 y 3 > 3 3 {\displaystyle {\frac {3y}{3}}>{\frac {3}{3}}}
      y > 1 {\displaystyle y>1}
    • Неравенство должно иметь только одну переменную. Если неравенство имеет две переменные, график лучше строить на координатной плоскости.
  2. Нарисуйте числовую прямую. На числовой прямой отметьте найденное значение (переменная может быть меньше, больше или равна этому значению). Числовую прямую рисуйте соответствующей длины (длинную или короткую).

    • Например, если вы вычислили, что y > 1 {\displaystyle y>1} , на числовой прямой отметьте значение 1.
  3. Нарисуйте кружок, обозначающий найденное значение. Если переменная меньше ( < {\displaystyle <} ) или больше ( > {\displaystyle >} ) этого значения, кружок не закрашивается, потому что множество решений не включает это значение. Если переменная меньше или равна ( ≤ {\displaystyle \leq } ) или больше или равна ( ≥ {\displaystyle \geq } ) этому значению, кружок закрашивается, потому что множество решений включает это значение.

    • y > 1 {\displaystyle y>1} , на числовой прямой нарисуйте незакрашенный кружок в точке 1, потому что 1 не входит в множество решений.
  4. На числовой прямой заштрихуйте область, определяющую множество решений. Если переменная больше найденного значения, заштрихуйте область справа от него, потому что множество решений включает все значения, которые больше найденного. Если переменная меньше найденного значения, заштрихуйте область слева от него, потому что множество решений включает все значения, которые меньше найденного.

    • Например, если дано неравенство y > 1 {\displaystyle y>1} , на числовой прямой заштрихуйте область справа от 1, потому что множество решений включает все значения больше 1.

    Графическое изображение линейного неравенства на координатной плоскости

    1. Решите неравенство (найдите значение y {\displaystyle y} ). Чтобы получить линейное уравнение, изолируйте переменную на левой стороне при помощи известных алгебраических методов. В правой части должна остаться переменная x {\displaystyle x} и, возможно, некоторая постоянная.

      • Например, дано неравенство 3 y + 9 > 9 x {\displaystyle 3y+9>9x} . Чтобы изолировать переменную y {\displaystyle y} , из обеих сторон неравенства вычтите 9, а затем обе стороны разделите на 3:
        3 y + 9 > 9 x {\displaystyle 3y+9>9x}
        3 y + 9 − 9 > 9 x − 9 {\displaystyle 3y+9-9>9x-9}
        3 y > 9 x − 9 {\displaystyle 3y>9x-9}
        3 y 3 > 9 x − 9 3 {\displaystyle {\frac {3y}{3}}>{\frac {9x-9}{3}}}
        y > 3 x − 3 {\displaystyle y>3x-3}
    2. На координатной плоскости постройте график линейного уравнения. постройте график , как строите график любого линейного уравнения. Нанесите точку пересечения с осью Y, а затем при помощи углового коэффициента нанесите другие точки.

      • y > 3 x − 3 {\displaystyle y>3x-3} постройте график уравнения y = 3 x − 3 {\displaystyle y=3x-3} . Точка пересечения с осью Y имеет координаты , а угловой коэффициент равен 3 (или 3 1 {\displaystyle {\frac {3}{1}}} ). Таким образом, сначала нанесите точку с координатами (0 , − 3) {\displaystyle (0,-3)} ; точка над точкой пересечения с осью Y имеет координаты (1 , 0) {\displaystyle (1,0)} ; точка под точкой пересечения с осью Y имеет координаты (− 1 , − 6) {\displaystyle (-1,-6)}
    3. Проведите прямую. Если неравенство строгое (включает знак < {\displaystyle <} или > {\displaystyle >} ), проведите пунктирную прямую, потому что множество решений не включает значения, лежащие на прямой. Если неравенство нестрогое (включает знак ≤ {\displaystyle \leq } или ≥ {\displaystyle \geq } ), проведите сплошную прямую, потому что множество решений включает значения, лежащие на прямой.

      • Например, в случае неравенства y > 3 x − 3 {\displaystyle y>3x-3} проведите пунктирную прямую, потому что множество решений не включает значения, лежащие на прямой.
    4. Заштрихуйте соответствующую область. Если неравенство имеет вид y > m x + b {\displaystyle y>mx+b} , заштрихуйте область над прямой. Если неравенство имеет вид y < m x + b {\displaystyle y, заштрихуйте область под прямой.

      • Например, в случае неравенства y > 3 x − 3 {\displaystyle y>3x-3} заштрихуйте область над прямой.

    Графическое изображение квадратного неравенства на координатной плоскости

    1. Определите, что данное неравенство является квадратным. Квадратное неравенство имеет вид a x 2 + b x + c {\displaystyle ax^{2}+bx+c} . Иногда неравенство не содержит переменную первого порядка ( x {\displaystyle x} ) и/или свободный член (постоянную), но обязательно включает переменную второго порядка ( x 2 {\displaystyle x^{2}} ). Переменные x {\displaystyle x} и y {\displaystyle y} должны быть изолированы на разных сторонах неравенства.

      • Например, нужно построить график неравенства y < x 2 − 10 x + 16 {\displaystyle y.
    2. На координатной плоскости постройте график. Для этого преобразуйте неравенство в уравнение и постройте график , как строите график любого квадратного уравнения. Помните, что график квадратного уравнения является параболой.

      • Например, в случае неравенства y < x 2 − 10 x + 16 {\displaystyle y постройте график квадратного уравнения y = x 2 − 10 x + 16 {\displaystyle y=x^{2}-10x+16} . Вершина параболы находится в точке (5 , − 9) {\displaystyle (5,-9)} , и парабола пересекает ось Х в точках (2 , 0) {\displaystyle (2,0)} и (8 , 0) {\displaystyle (8,0)} .