Параметры светодиодных источников света, характеристики светодиодных ламп. Параметры и технические характеристики светодиодных светильников

Ну что? Пост я хотел написать уже как год назад, но тогда не было повода. А сейчас повод снова есть! Светодиодное освещение входит в массы тотально как и китайскими лампочками с барахолок, так и злыми светодиодными прожекторами или спотами в потолок.

Светодиоды — это тренд, это круто, мощно и удобно. Они потребляют меньше мощности, более компактны. Но не всё так гладко, как кажется, и не все моменты учитывают. Лично мне не нравится, когда светодиодный фонарь на столбе лучит как точечный источник света и из-за этого прямо под столбом светло и хорошо, но зато слепит глаза, а в трёх метрах ни черта не видно.

Но дело не только в том, насколько удобно или не удобно это освещение! Есть ещё одно техническое западло, которое не все учитывают, но которое приводит к нехорошим последствиям. Для того, чтобы понять о том, какое же это такое западло, мы возвращаемся к самому началу и вспоминаем , в котором коряво описано их устройство. Давайте его повторим?

Итак, блоки питания с трансформатором почти насовсем отошли нафиг. Почему? А потому что тяжело стабилизировать напряжение, потому что сам трансформатор тяжёлый и громоздкий и не везде его позапихаешь. Оказалось удобнее делать такие же блоки питания, но где трансформатор работает на более высокой частоте. Вот в нашей сети частота всего 50 Гц. А если её поднять до 25-30 кГц, то огромный трансформатор на 200 Ватт превратится в маленькую фиговинку.

А как поднять частоту сети? А сделать свой собственный генератор этой частоты на микросхеме или транзисторах! Пущай он наш маленький трансформатор и питает! А уже сам генератор мы будем питать обычным сетевым напряжением. Рассмотрим логику создателей ИБП дальше. Каким родом тока проще всего питать генератор? Постоянным, выпрямленным. А значит у нас появляется выпрямитель и фильтрующий конденсатор . И вот тут-то и начинается самое главное западло.

Повторим всё ещё раз. Обычное сетевое напряжение переменного тока выпрямляется при помощи диодного моста и попадает на фильтрующий конденсатор . После этого напряжение постоянного тока идёт на генератор высокой частоты. Напряжение высокой частоты проходит через трансформатор, понижается до нужного уровня, выпрямляется, стабилизируется и подаётся на выход блока питания.

И вот это вот конденсатор и создаёт нам самое главное западло. Когда мы подаём питание на любой импульсный блок питания (а это и компьютерный, и зарядка для сотового, и драйвер или блок питания для LED-светильника), то кратковременно на доли секунды потребляемый ток подскакивает до космических величин (раз в 10 больше обычного потребления).

ВНИМАНИЕ! Всё, описанное и подсчитанное ниже, подходит для тех случаев, когда вы ставите светодиодные светильники с отдельным внешним драйвером (в том числе и светодиодные прожекторы)! Если вы просто переходите на светодиодные лампы, которые питаются от 220 напрямую и в которых драйвер встроен внутрь, то обычно никаких проблем с освещением не возникает.

Давайте возьмём какой-нибудь драйвер от Mean Well и посмотрим на его спецификацию. Я наобум выбрал APC-16-350 . Это хиленький такой драйвер на 16 Ватт со стабилизацией тока. Для какого-нибудь светодиода на 10 Ватт сгодится.

Внимательно изучаем указанные там параметры и первым видим параметр «Потребляемый ток» («AC Current») — 0,3 ампера. И тут наши добрые люди (в том числе и те, кто заказывает мне щиты) как раз и пишут мне что-то типа «А, да у меня освещение светодиодное, всего десять драйверов по 0,3 ампера каждый, потребление фигня».

И когда-то я тоже думал, что потребление фигня. Ну смотрите сами: 0,3 х 10 = 3 ампера. Да это ж любая хилая релюшка справится, а защищать такие линии надо автоматом на 6А. Верно?

А вот НЕТ! Добрый производитель дал нам классный параметр «Стартовый ток» («Inrush Current»), который составляет.. 45 (сорок пять!) ампер за время 0,000 21 секунды ! Представляете? Какие-то ничтожные 0,3 ампера при включении блока превращаются в 45! Это в 150 раз больше нормального потребления! И чтобы мы совсем уже расстроились, следующий параметр, который нам дают — это то, сколько таких драйверов можно навесить на автомат номиналом в 16А (а не 10А, которым мы обычно защищаем освещение): на B16 можно поставить 13 штук драйверов, а на С16 — 23 штуки.

Давайте ещё раз переосмыслим всё это. При старте хилый драйвер жрёт ток в 150 раз больше обычного (45 ампер)! А на автомат B16 их можно поставить всего 13 штук!

И вот из-за этого сейчас происходит всё больше и больше вот таких вот случаев (все они из первых рук, потому что это были мои заказчики):

  • В щите стоял автомат B6 для «хилых драйверов по 10 Вт». Драйверов было десять штук. При включении света обычным выключателем автомат наглухо вышибало. Заменили автомат на B10 — всё равно вышибало. Вышибать перестало на C10. Заменить автомат на C16 нельзя, потому что на освещение заложен стандартный кабель 3х1,5 кв.мм.
  • Регулярно (раз в месяц) сваривались контакты выключателя, который включал пяток светодиодов с их драйверами. Пришлось менять светильники на другие, в которых нет таких злобных драйверов (про это ниже).
  • Собрали щит с ПЛК и . Я как-то пропустил то, что светодиодные лампы там тоже с драйверами. После парочки включений этих ламп (тоже десяток светильников) релюшки спаялись и умерли. Хотя они, заметьте, расчитаны на 16А активной нагрузки.

И что делать? Как это исправлять? Положим, если бы горели какие-то там хилые релюшки! А горят даже выключатели! Обычные выключатели, рассчитанные на 10А. Давайте подумаем про возможные варианты:

  • Менять релюшки на контакторы серии ESB20 (на 20А с более прочными контактами). Но выдержат ли они? Стартовый ток десяти таких драйверов будет 45 х 10 = 450 ампер. При этом контакторы ESB20 не очень хорошие. Их магнитная система работает на переменном токе в отличие от всех других и часто гудит или перегревается.
  • Ставить более злые контакторы. Ну это уже смешно. Прикиньте, сколько будет стоить щит на ESB24, если их понадобится поставить штук 25?
  • Использовать установочные реле E297 (аналог импульсных по размерам и типу, но без фиксации). Они заказные и рассчитаны на токи 16А. И мы ничего не выигрываем!
  • Использовать PTC-Термисторы, включенные последовательно с таким драйвером, чтобы облегчить его стартовый режим. Так делают в импульсных блоках питания на большие мощности. Я никогда не рассматривал этот вариант и буду благодарен, если мне кто-то подскажет в комментариях, что это такое и с чем их едят.

А как обойти фишку подгорания контактов у выключателя? Действительно, что ли, ставить контактор и закладывать магистраль 3х4 под автоматом C20 на такие светильники?..

Так что будьте ОЧЕНЬ внимательны со светодиодным освещением большой мощности! Не всё так легко и просто, и не всё так дешёво как может показаться: возможно, что вам придётся тратить денег на хитрую начинку щита для управления драйверами светодиодных ламп и только потом уже высчитывать общую экономию по потреблению электроэнергии!

Если вас заинтересовала информация из этого поста и вы хотите со мной связаться (или заказать / ), то пишите мне на почту или звоните на +7-926-286-97-35 . Отзываюсь на имя "Электрошаман".
Невнимательных, тупых и наглых продаванов и менеджеров я буду жёстко стебать, если они не заглянут в , а скорее кинутся звонить.

Учитывая высокую популярность светодиодных источников света как среди покупателей, так и продавцов, следует подробнее остановиться на том, какие параметры используются для характеристики потребительских свойств таких ламп, на что, собственно, следует обращать внимание при покупке.

1. В первую очередь любая лампа, в том числе и светодиодная, характеризуется величиной потребляемой мощности (ватт). Обычно мощность для бытовых целей лежит в пределах от 1 до 10 Вт, хотя существуют и гораздо более мощные источники для уличного освещения - 100 Вт и более. Строго говоря, потребляемая мощность характеризует только скорость расходования электроэнергии из сети, а для того что бы понять насколько сильно лампа светит следует поинтересоваться у продавца величиной светового потока.

2. Световой поток измеряется в люменах и наиболее полно характеризует источник света с точки зрения его способности осветить помещение. К сожалению, очень часто данные о световом потоке продаваемых светодиодных ламп просто отсутствуют, а вместо этого на упаковке указывается мощность некой , которая дает такой же световой поток.

Эти данные достаточно лукавы, ведь их невозможно корректно проверить. К примеру, на упаковке светодиодной лампы мелко написано: световой поток - 280 лм, или вовсе нет данных по потоку, а крупно изображено: мощность 4 Вт - эквивалентно 50 Вт лампе, и поспорить здесь трудно, может быть и существует какая-нибудь лампа накаливания, которая потребляя 50 Вт даст всего 280 лм. Только нормальная лампа накаливания при мощности 50 Вт должна давать примерно 560 лм.

Тем не менее, вопрос об эквивалентной мощности для покупателя важен, особенно если он подбирает светодиодные лампы взамен имеющихся ламп накаливания. Более правильно исходить из данных по световому потоку светодиодных ламп, пересчитывая их в эквивалентную мощность ламп накаливания. Здесь можно ориентироваться на параметры ламп известного производителя, например OSRAM.

Данные из каталога 2012 г. приведены в таблице:

Световой поток ламп OSRAM серии CLASSIC A (груша)

Ещё сложнее ситуация, когда надо определить эквивалентную мощность при замене . Если галогенная лампа на 220 В, то можно ориентироваться на приведённую выше таблицу, но если вы подбираете замену 12 вольтовой лампе, то надо помнить, что у этих ламп световой поток при той же мощности существенно выше, так что надо вносить поправку. Коэффициент поправки зависит от типа галогенной лампы и может быть определён с помощью таблицы:


Например, пусть светодиодная лампа имеет световой поток 240 лм и надо заменить старые лампы накаливания 60 Вт. В соответствии с первой таблицей, такая лампа накаливания имеет светоотдачу 710/60 = 11,8 лм/Вт. Таким образом, мощность лампы накаливания, эквивалентной оказывается 240/11,8 = 20 Вт. Таким образом, что бы заменить люстру из трех шестидесятиваттных ламп надо 9 таких светодиодных лампочек. Обращаю ваше внимание, что пример условный, существуют гораздо более сильные светодиодные лампы, которых потребуется значительно меньше.

Если требуется найти замену галогенной лампе TITAN, то в соответствии со второй таблицей эквивалентная мощность составит 20 Вт/2,63 = 7,6 Вт. Таким образом, что бы заменить одну лампу TITAN 35 Вт потребуется 4-5 таких светодиодных ламп.

3. Кроме общей величины светового потока имеет значение то, как этот световой поток распределяется в пространстве. Направленность распределения светового потока характеризуется величиной угла расходимости лампы . Этот параметр устанавливается для источников света, дающих направленное излучение. Расходимость в 120° означает, что сила света уменьшается в 2 раза в направлении составляюшем угол 60° с осью светового пучка лампы. Лампы с расходимостью 120° имеют очень широкую диаграмму направленности, практически как у равнояркой площадки.

Широкий угол излучения лампы благоприятно сказывается на равномерности освещения помещения, но здесь есть одна тонкость, которая заключается в том, что светодиодные лампы обладают высокой яркостью под большими углами к излучающей плоскости, что может быть некомфортным. В связи с этим следует обращать внимание на выполнение требований к наличию защитного угла при установке широкоугольных светодиодных ламп в светильники, в том числе и во врезные потолочные. Лампы с узконаправленным излучением (20-30°) используются для акцентного освещения, но для общего мало пригодны.

4. Цветовая температура - параметр определяющий оттенок цвета излучения лампы. Тепло-белый свет соответствует цветовой температуре 2700 - 3500°К (2700 - имеет заметный желтый оттенок, обеспечивает уютное, не слишком сильное освещение, 3500 - побелее и посильнее). Цветовая температура 4000 - 5000° соответствует нейтрально-белому свету, обеспечивает сильное и комфортное освещение. 6500° и выше - холодно-белый свет на любителя, часто используют для уличного освещения (так как при такой цветовой температуре реализуется более высокая светоотдача).

5. Ещё один важный параметр коэффициент цветопередачи , который характеризует правильность восприятия цвета предметов при освещении лампой. Коэффициент цветопередачи должен быть указан на упаковке лампы и для светодиодных источников, предназначенных для внутреннего освещения, не может быть меньше 70 (для наружного освещения - 60).

6. Может быть самое главное для светодиодных ламп - срок службы . Обычно указывают очень большие цифры: 50000, 30000 часов. Впрочем, здесь всё далеко не просто. В соответствии с "Законом о защите прав потребителей" срок службы это срок, в течение которого, можно предъявить претензии изготовителю, если установлена его вина в том, что изделие вышло из строя.

Светодиодная лампа может светить очень долго, но со временем количество излучаемого света заметно уменьшается, происходит деградация светового потока, причем скорость процесса зависит от температуры нагрева излучающего кристалла. Поэтому, при оценке светодиодных ламп более корректно говорить о сроке в течении, которого происходит деградация светового потока не более заданной величины. В соответствии с действующими нормами допустимым считается спад светового потока не более чем на 30% в течении 25000 часов.

7. Коэффициент пульсаций - важный параметр, характеризующий наличие быстрых изменений светового потока, незаметных для глаза, но отрицательно сказывающихся на утомляемости. Требования к коэффициенту пульсации установлены в СП 52.13330.2011.

К сожалению, данные по значению коэффициента пульсации, как правило, на упаковке ламп не указываются. Остается надеяться, что при сертификационных испытаниях соответствие этого параметра требованиям было проверено. Из общих соображений можно предположить, что у , которые питаются от отдельных стабилизированных источников постоянного напряжения или тока, пульсации минимальны. Для ламп с примитивными встроенными в цоколь блоками питания пульсации могут быть значительно больше.

Помимо перечисленных выше, к светодиодным источникам света предъявляются требования и по другим параметрам: коэффициент мощности, энергоэффективность (светоотдача) и др.

Костюк Александр Владимирович

/ Характеристики светодиодов

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ И ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ВНЕДРЕНИЯ СВЕТОДИОДНЫХ СВЕТИЛЬНИКОВ

Экономичность:

1. Срок службы - до 100 тысяч часов, что эквивалентно 25 годам работы, 5 лет гарантии!

2. Снижение энергопотребления до 70% , т.е. более чем в 2 раза.

3. Экономия при санкционировании подключения точки электропотребления, за счёт меньшей нагрузки.

4. При монтаже требуется кабель меньшего сечения, что также является статьей экономии.

5. Светодиоды обладают возможностью регулировки яркости за счет снижения питающего напряжения для экономии в ночное время. При этом не изменяется спектральный состав излучения и цветопередача.

6. Снижение потерь мощности на ЛЭП, за счёт меньшего потребления тока.

Освещённость и надёжность:

1. Контрастность света светодиодов в 400 раз превышает контрастность газоразрядных ламп, индекс цветопередачи 80-85.

2. Показатель использования светового потока равен 100% , тогда как у стандартных уличных светильников – 60-75%

3. Мгновенное зажигание при подаче питающего напряжения и независимость от низких температур.

4. Вследствие отсутствия стеклянной колбы и нити накала (или горелки) - высокая механическая прочность, виброустойчивость и надежность.

5. Полное отсутствие опасности перегрузки электросетей в момент включения, пусковой ток равен нулю.

Экологичность:

1. Не требует утилизации, т.к. не содержит ртути, ее производных и других ядовитых или вредных составляющих.

2. Отсутствие вредного эффекта низкочастотных пульсаций (стробоскопического эффекта), свойственного люминесцентным и газоразрядным источникам света. Световой поток светодиодов постоянен, как и естественный свет солнца, что обеспечивает психологический комфорт.

Сводная таблица характеристик светильников на основе газоразрядной лампы и светодиодов.

Показатель

Ламповый светильник

Светодиодный светильник

Срок службы источника света

до 12 000 часов

до 100 000 часов

Экономия электроэнергии

до 70%

Использование светового потока

100%

Затраты на обслуживание

ежегодные

нет

Пусковой ток

4,5 А

нет

Потребляемый ток

2,1-2,2 А

0,6-1,0 А

высокая

низкая

Специальная утилизация источников света

требуется

не требуется

Виброустойчивость

слабая

высокая

Устойчивость к перепадам напряжения

слабая

не чувствителен

Стабильность работы при низких температурах

низкая

высокая

Наличие стробоскопического эффекта (мерцание)

есть

нет

Контрастность и цветопередача

низкая

в 400 раз выше

Экологическая безопасность

нет

полная

Цены и характеристики уличных светодиодных светильников

Марка

ЛЗ-28-120

ЛЗ-20-90

Потребляемая мощность, не более Вт

Напряжение питания, B

AC 220÷10 %

AC 220÷10 %

Угол раскрытия луча - эллиптический

135˚/90˚

135˚ /90˚

Световой поток не менее, люмен

6000

4400

Вес, кг

Габариты, мм

810(a)х310(b) х215(h)

810(a)х310(b) х215(h)

Потребляемый ток, А

0,6÷0,9А

0,6÷0,9А

Исполнение (безопасность)

IP 65

IP 65

Гарантийный срок эксплуатации

5 лет

5 лет

Ресурс работы в режиме городского освещения

25 лет

25 лет

Освещенность в центральной точке с высоты 10м, лк

не менее 25

не менее 15 Наименование

Наши светильники

Philips

Neo Neon ( Китай )

Мощность, Вт

Световой поток, лм

6000

6000

3000

Гарантия

5 лет

2 года

2 года

Стоимость, руб/шт.

22 990

120 000

32 000

Окупаемость светодиодного светильника составляет 4,5 года , т.е. в пределах гарантийного срока (это видно из расчёта, который высылается по запросу)! Первые 4,5 года светильник экономит, а следующие 20 лет приносит реальную прибыль. Нужно учитывать, что расчёт является укрупнённым и в нём не учтены снижение потерь на ЛЭП, экономия эл-ва в ночное время, экономия при санкционировании подключения точки энергопотребления, использование кабеля меньшего сечения, снижение штата и материальной базы обслуживающего персонала, а всё это снижает срок окупаемости и делает использование светодиодов экономически эффективным.

Энергосберегающие технологии и оборудование пользуются спросом и популярностью. Одним из таких устройств является светодиодная лампа. В качестве источника света в ней используются светодиоды, которые объединены в одну цепь. Эта лампочка используется в осветительных приборах для оформления подсветки зданий и сооружений, в точечных светильниках, которые монтируются на подвесных или натяжных потолочных конструкциях.

Конструкция светодиодных ламп

Светодиодные лампы предназначены для напряжения 12 В и соответственно конструкция устройства отличается от люминесцентных аналогов или в которых используется нить накаливания. Конструктивно она выполнена из следующих основных компонентов:

  • Стеклянная колба . Может изготавливаться из прозрачного или матового стекла и иметь сферическую или плоскую форму. Купольная конструкция увеличивает угол рассеивания светового потока до 270°. Модели лампочек с плоской стеклянной поверхностью применяются в точечных светильниках для подсветки интерьера или разбивки площади на отдельные зоны. Угол освещения 30 – 60°.
  • Светодиоды . Источники света последовательно соединяются в одну схему подключения, что повышает светоотдачу устройства.
  • Радиатор . Представляет собой металлическую пластину из алюминиевого сплава. Она предназначена для отвода тепла, излучаемого светодиодами.
  • Корпус . Изготавливается из высокопрочного пластика, который является диэлектриком и выполняет защитные функции от поражения электрическим током при монтаже или демонтаже источника света.
  • Драйвер . Предназначен для стабилизации напряжения и преобразования тока из переменного в постоянный.
  • Цоколь . Может изготавливаться под патроны разных видов: стандартной конструкции E27 и E14 или G4, G13, GU10 и так далее.

В зависимости от количества излучаемого света одним диодом и числа определяется яркость светодиодной лампы. Среднее значение освещенность рассчитывается из соотношения 1 Лм (Люмен – единица измерения яркости светового потока) на 100 Вт.

Преимущества и недостатки 12 В освещения

Для перехода на осветительные приборы, которые подключаются к низковольтному источнику питания, следует изучить их достоинства и недостатки. Среди преимуществ можно выделить следующее:

  • Безопасность . Использование светодиодных лампам в светильниках на 12 В повышает уровень защиты и устраняет возможность поражения электрическим током.
  • Пожарная безопасность . Проводка низковольтного напряжения не может быть источником возгорания и причиной возникновения пожара. Поэтому провода не нуждаются в дополнительной защите, их не помещают в гофрированные рукава.
  • Универсальность . Электрический ток напряжение которого не превышает 12 В считается условно безопасным, который не может нанести серьезные повреждения человеку. В связи с этим эти лампы могут использоваться в помещениях с нормальными условиями и повышенной опасности. Например, в светильниках для сауны, погреба, ванной комнаты, кухни, спальни и т. д.
  • Экономия . При использовании данного источника света для освещения помещения снижает расход электроэнергии и соответственно затраты денежных средств на оплату счетов.
  • Экологичность . В конструкции не используются материалы, которые в процессе эксплуатации устройства излучают вредные вещества для здоровья человека или животных.
  • Надежность . Лампы имеют высокую устойчивость к механическим повреждениям: царапины, сколы, выщерблены и т. д.

Не смотря на все преимущества источник света, имеет и свои недостатки. К минусам светодиодным лампам рассчитанных на 12V относятся:

  • Требуется дополнительное устройство - блок питания (БП) . Наличие драйвера стабилизирующего и понижающего напряжение сети с 220 на 12 В усложняет прокладку проводки. Он обладает своим КПД, которое снижает эффективность освещения и за счет него в схеме появляется дополнительное слабое звено, которое может выйти из строя.
  • Яркость свечения . На мощность светового потока лампы подключенной к низковольтной сети оказывает влияние падение напряжение. Это происходит из-за потребления большого тока. Поэтому длина проводника от трансформатора до первого и последнего источника света должна быть одинаковой, допускается погрешность в 2 – 3 %. Иначе последний светильник будет, тускнея светить, чем первый.

Разновидности светодиодных ламп

Источники света классифицируются по нескольким критериям:

  • Тип цоколя . Выпускаются традиционного исполнения с типоразмерами: E14, E27,E40. Так же производятся безцокольные модели ламп: G4, G5, G9 и т. д.
  • Температура свечения . Различают три типа излучаемого света: мягкий – температура от 2500 до 2700 °К, белый – 3800 – 4500 °К и холодный температура светового потока более 5000 °К
  • Тип светодиода . В Зависимости от мощности и назначения лампы светодиоды имеют разную конфигурацию, которая определяется видом кристалла. Он может иметь ножки для подключения или монтироваться непосредственно в плату.


Блок питания для светодиодных ламп 12 В

Блоки питания выбираются в зависимости от назначения светодиодных светильников.


Они делятся на следующие виды:

  • Герметичные . Применяются для установки ламп в ванной комнате, сауне, уличное освещение.
  • Негерметичные . Предназначены для монтажа внутри помещения с нормальным уровнем влажности.
  • С активным охлаждением . Оснащается вентилятором, что способствует увеличению мощности и уменьшению габаритов.
  • Пассивное охлаждение . Для отвода тепла используется радиатор. Преимущество – бесшумная работа. Недостаток – мощность ограничивается размерами устройства.

Также блоки питания подбираются по основным характеристикам:

  • Мощность . Рассчитывается методом сложения всей подключаемой нагрузки и плюс запас мощности 10 – 15 %, для предотвращения работы в режиме перегрузки.
  • Выходной ток . Зависит от количества подключаемых ламп. Если известна мощность нагрузки и «косинус фи» ламп, то ток можно вычислить по формуле: суммарная мощность ламп / 12 / cos φ. Значение параметра определяет также площадь поперечного сечения проводников, соединяющих БП и лампы.
  • Напряжение на выходе . Для нашего случая это - 12В.

При подключении светодиодных ламп 12 В к электрической линии с напряжением 220 В они должны питаться от драйвера или блока питания.

Технический прогресс в области энергосберегающих технологий способствует постоянному развитию и улучшению технических и эксплуатационных характеристик светодиодных ламп.