Общие свойства разрядов, классификация разрядных ламп и области их применения. Виды и принцип работы современных светодиодных ламп Газоразрядные лампы высокого давления имеют рабочее давление

Области применения

Благодаря линейчатому спектру излучения газоразрядные лампы первоначально применялись лишь в специальных случаях, когда получение заданного спектрального состава излучения являлось фактором более важным, чем значение световой отдачи. Возникла широкая номенклатура , предназначенных для применения в научно-исследовательской аппаратуре, которые объединяют под одним общим названием - спектральные лампы.

Рисунок 1. Спектральные лампы с парами натрия и магния

Возможность создания интенсивного ультрафиолетового излучения, отличающегося высокими химической активностью и биологическим действием, привела к использованию газоразрядных ламп в химической и полиграфической промышленности, а также в медицине.

Короткая дуга в газе или парах металла при сверхвысоком давлении отличается высокой яркостью, что позволило в настоящее время отказаться от открытой угольной дуги в прожекторной технике.

Применение люминофоров, позволившее получать газоразрядные лампы с непрерывным спектром излучения в видимой области, определило возможность внедрения газоразрядных ламп в осветительные установки и вытеснение из ряда областей ламп накаливания.

Особенности изотермической плазмы, обеспечивающей получение спектра излучения, близкого к излучению тепловых источников, при температурах, недоступных в лампах накаливания, привели к разработке сверхмощных осветительных ламп со спектром, практически совпадающим с солнечным.

Практическая безынерционность газового разряда позволила применить газоразрядные лампы в фототелеграфе и вычислительной технике, а также создать импульсные лампы, концентрирующие в кратковременном световом импульсе огромную световую энергию.

Видео 1. Импульсные лампы

Требования снижения расхода электроэнергии во всех областях народного хозяйства расширяют применение экономичных газоразрядных ламп, объем выпуска которых непрерывно растет.

Лампы тлеющего разряда

Как известно, нормальный тлеющий разряд возникает при малых плотностях тока. Если при этом расстояние между катодом и анодом настолько мало, что в его пределах не может разместиться столб разряда, то имеют место катодное свечение и отрицательное тлеющее свечение, покрывающие поверхность катода. Расход мощности в лампе тлеющего разряда весьма мал, так как мал ток, а напряжение определяется лишь катодным падением. Излучаемый лампой световой поток незначителен, однако совершенно достаточен для того, чтобы зажигание лампы было заметным, особенно если разряд происходит в газе, дающем цветное излучение, например в неоне (длина волны 600 нм, красный цвет излучения). Такие лампы различной конструкции широко используют в качестве индикаторов. Так называемые цифровые лампы являлись ранее составной частью многих автоматических устройств с цифровыми указателями.

Рисунок 3. Лампа тлеющего разряда предназначенная для индикации цифр

При длинном газоразрядном промежутке с расстоянием между электродами значительно большим, чем прикатодная область, основное излучение разряда сосредотачивается в столбе разряда, который при тлеющем разряде отличается от столба при дуговом разряде лишь меньшей плотностью тока. Излучение такого столба может иметь высокую световую отдачу при большой длине. Высокое значение катодного падения напряжения в тлеющем разряде обусловило разработку ламп на высокое напряжение питания, то есть напряжение на них значительно превосходит напряжение, считающееся безопасным по условиям работы в закрытых помещениях, особенно бытовых. Однако такие лампы с успехом применяют для различного рода рекламных и сигнальных установок.

Рисунок 4. Лампы с длинным столбом тлеющего разряда

Преимуществом лампы тлеющего разряда является простота конструкции катода по сравнению с катодом лампы дугового разряда. Кроме того, тлеющий разряд менее чувствителен к наличию случайных примесей в газоразрядном пространстве, а следовательно, более долговечен.

Лампы дугового разряда

Дуговой разряд применяется практически во всех газоразрядных лампах. Связано это с тем, что при дуговом разряде ослабевает катодное падение напряжения и уменьшается его роль в балансе энергии лампы. Дуговые лампы могут быть изготовлены на рабочие напряжения равные напряжениям электрических сетей. При небольшой и средней плотности тока дугового разряда, а также при невысоком давлении в лампе источником излучения в основном выступает положительный столб, а свечение катода практически не имеет никакого значения. Повышая давление газа или паров металла наполняющих горелку прикатодная область постепенно уменьшается, а при значительных давлениях (более 3 × 10 4 Па) ее практически не остается совсем. Увеличением давления в лампах достигают высоких параметров излучения при небольших расстояниях между электродами. Высокие значения светоотдачи при совсем малых расстояниях можно получить при сверхвысоких давлениях (более 10 6 Па). С ростом давления и уменьшением расстояния между электродами сильно возрастает плотность тока и яркость шнура разряда.

При увеличении давления и плотности тока происходит образование изотермической плазмы, излучение которой в основном состоит из нерезонансных спектральных линий, возникающих при переходе электрона в атоме на более низкие, но не основные уровни.

Дуговой разряд используют в самых различных газах и парах металлов от самых низких давлений до сверхвысоких. В связи с этим конструкции колб дуговых ламп чрезвычайно разнообразны как по форме, так и по роду применяемого материала. Для ламп сверхвысокого давления большое значение приобретает прочность колб в условиях высоких температур, что привело к разработке соответствующих методов их расчета и исследования параметров.

После появления дугового разряда из катодного пятна выбивается основная масса электронов. Светящаяся катодная часть разряда начинается с катодного пятна, представляющего из себя небольшую светящуюся точку на спирали. Катодных пятен бывает несколько. В самокалящихся катодах катодное пятно занимает небольшую часть его поверхности, перемещаясь по ней по мере испарения оксида. Если плотность тока высока на материале катода возникают местные тепловые перегрузки. По причине таких перегрузок приходится применять катоды специальных сложных конструкций. Количество конструкций катодов разнообразно, но все они могут быть разделены на катоды ламп низкого давления, высокого давления и сверхвысокого давления.

Рисунок 5. Трубчатая газоразрядная лампа низкого давления

Рисунок 6. Газоразрядная лампа высокого давления

Рисунок 7. Газоразрядная лампа сверхвысокого давления

Разнообразие материалов, применяемых для колб дуговых ламп, большие значения токов требуют решения вопроса о создании специальных вводов. Подробно о конструкциях газоразрядных ламп можно прочитать в специальной литературе.

Классификация ламп

Аналогично лампам накаливания газоразрядные лампы отличаются между собой областью применения, видом разряда, давлением и видом наполняющего газа или паров металла, использованием люминофора. Если смотреть глазами изготовителей газоразрядных ламп то они могут также отличаться особенностями конструкций, важнейшими из которых являются форма и размеры колбы (газоразрядного промежутка), используемый материал из которого изготавливается колба, материал и конструкция электродов, конструкция цоколей и выводов.

При классификации газоразрядных ламп могут возникнуть некоторые затруднения связанные с многообразием признаков, на основе которых они могут быть классифицированы. В связи с этим для классификации принятой в настоящее время и используемой в качестве основы системы обозначений газоразрядных ламп, определен ограниченный ряд признаков. Стоит отметить, что для ртутных трубчатых низкого давления, являющихся наиболее массовыми газоразрядными лампами, существует своя система обозначений.

Итак, для обозначения газоразрядных ламп пользуются следующими основными признаками:

  1. рабочее давление (лампы сверхвысокого давления – более 10 6 Па, высокого давления – от 3 × 10 4 до 10 6 Па и низкого давления – от 0,1 до 10 4 Па);
  2. состав наполнителя, в котором происходит разряд (газ, пары металла и их соединений);
  3. наименование используемого газа или пара металла (ксенон – Кс, натрий – На, ртуть – Р и тому подобные);
  4. вид разряда (импульсный – И, тлеющий – Т, дуговой – Д).

Форма колбы обозначается буквами: Т – трубчатая, Ш – шаровая; если на колбу лампы наносится люминофор то в обозначение добавляется буква Л. Лампы делятся также по: области свечения – лампы тлеющего свечения и лампы со столбом разряда; по способу охлаждения – на лампы с принудительным и естественным воздушным охлаждением, лампы с водяным охлаждением.

Ртутные трубчатые люминесцентные лампы низкого давления принято обозначать проще. Например, в их обозначении первая буква Л говорит о том, что лампа принадлежит к данному виду источников света, последующие буквы – а их может быть одна, две или даже три, обозначают цветность излучения. Цветность является важнейшим параметром обозначения, так как цветность определяет область использования лампы.

Классификация газоразрядных ламп может также вестись по их значимости в области техники освещения: дуговые лампы высокого давления с исправленной цветностью; дуговые трубчатые лампы высокого давления; дуговые высокого давления; дуговые натриевые лампы низкого и высокого давления; дуговые высокого давления; дуговые шаровые сверхвысокого давления; дуговые ксеноновые трубчатые и шаровые лампы; люминесцентные лампы низкого давления; электродосветные, импульсные и другие виды специальных газоразрядных ламп.

Области применения

Благодаря линейчатому спектру излучения газоразрядные лампы первоначально применялись лишь в специальных случаях, когда получение заданного спектрального состава излучения являлось фактором более важным, чем значение световой отдачи. Возникла широкая номенклатура , предназначенных для применения в научно-исследовательской аппаратуре, которые объединяют под одним общим названием - спектральные лампы.

Рисунок 1. Спектральные лампы с парами натрия и магния

Возможность создания интенсивного ультрафиолетового излучения, отличающегося высокими химической активностью и биологическим действием, привела к использованию газоразрядных ламп в химической и полиграфической промышленности, а также в медицине.

Короткая дуга в газе или парах металла при сверхвысоком давлении отличается высокой яркостью, что позволило в настоящее время отказаться от открытой угольной дуги в прожекторной технике.

Применение люминофоров, позволившее получать газоразрядные лампы с непрерывным спектром излучения в видимой области, определило возможность внедрения газоразрядных ламп в осветительные установки и вытеснение из ряда областей ламп накаливания.

Особенности изотермической плазмы, обеспечивающей получение спектра излучения, близкого к излучению тепловых источников, при температурах, недоступных в лампах накаливания, привели к разработке сверхмощных осветительных ламп со спектром, практически совпадающим с солнечным.

Практическая безынерционность газового разряда позволила применить газоразрядные лампы в фототелеграфе и вычислительной технике, а также создать импульсные лампы, концентрирующие в кратковременном световом импульсе огромную световую энергию.

Видео 1. Импульсные лампы

Требования снижения расхода электроэнергии во всех областях народного хозяйства расширяют применение экономичных газоразрядных ламп, объем выпуска которых непрерывно растет.

Лампы тлеющего разряда

Как известно, нормальный тлеющий разряд возникает при малых плотностях тока. Если при этом расстояние между катодом и анодом настолько мало, что в его пределах не может разместиться столб разряда, то имеют место катодное свечение и отрицательное тлеющее свечение, покрывающие поверхность катода. Расход мощности в лампе тлеющего разряда весьма мал, так как мал ток, а напряжение определяется лишь катодным падением. Излучаемый лампой световой поток незначителен, однако совершенно достаточен для того, чтобы зажигание лампы было заметным, особенно если разряд происходит в газе, дающем цветное излучение, например в неоне (длина волны 600 нм, красный цвет излучения). Такие лампы различной конструкции широко используют в качестве индикаторов. Так называемые цифровые лампы являлись ранее составной частью многих автоматических устройств с цифровыми указателями.

Рисунок 3. Лампа тлеющего разряда предназначенная для индикации цифр

При длинном газоразрядном промежутке с расстоянием между электродами значительно большим, чем прикатодная область, основное излучение разряда сосредотачивается в столбе разряда, который при тлеющем разряде отличается от столба при дуговом разряде лишь меньшей плотностью тока. Излучение такого столба может иметь высокую световую отдачу при большой длине. Высокое значение катодного падения напряжения в тлеющем разряде обусловило разработку ламп на высокое напряжение питания, то есть напряжение на них значительно превосходит напряжение, считающееся безопасным по условиям работы в закрытых помещениях, особенно бытовых. Однако такие лампы с успехом применяют для различного рода рекламных и сигнальных установок.

Рисунок 4. Лампы с длинным столбом тлеющего разряда

Преимуществом лампы тлеющего разряда является простота конструкции катода по сравнению с катодом лампы дугового разряда. Кроме того, тлеющий разряд менее чувствителен к наличию случайных примесей в газоразрядном пространстве, а следовательно, более долговечен.

Лампы дугового разряда

Дуговой разряд применяется практически во всех газоразрядных лампах. Связано это с тем, что при дуговом разряде ослабевает катодное падение напряжения и уменьшается его роль в балансе энергии лампы. Дуговые лампы могут быть изготовлены на рабочие напряжения равные напряжениям электрических сетей. При небольшой и средней плотности тока дугового разряда, а также при невысоком давлении в лампе источником излучения в основном выступает положительный столб, а свечение катода практически не имеет никакого значения. Повышая давление газа или паров металла наполняющих горелку прикатодная область постепенно уменьшается, а при значительных давлениях (более 3 × 10 4 Па) ее практически не остается совсем. Увеличением давления в лампах достигают высоких параметров излучения при небольших расстояниях между электродами. Высокие значения светоотдачи при совсем малых расстояниях можно получить при сверхвысоких давлениях (более 10 6 Па). С ростом давления и уменьшением расстояния между электродами сильно возрастает плотность тока и яркость шнура разряда.

При увеличении давления и плотности тока происходит образование изотермической плазмы, излучение которой в основном состоит из нерезонансных спектральных линий, возникающих при переходе электрона в атоме на более низкие, но не основные уровни.

Дуговой разряд используют в самых различных газах и парах металлов от самых низких давлений до сверхвысоких. В связи с этим конструкции колб дуговых ламп чрезвычайно разнообразны как по форме, так и по роду применяемого материала. Для ламп сверхвысокого давления большое значение приобретает прочность колб в условиях высоких температур, что привело к разработке соответствующих методов их расчета и исследования параметров.

После появления дугового разряда из катодного пятна выбивается основная масса электронов. Светящаяся катодная часть разряда начинается с катодного пятна, представляющего из себя небольшую светящуюся точку на спирали. Катодных пятен бывает несколько. В самокалящихся катодах катодное пятно занимает небольшую часть его поверхности, перемещаясь по ней по мере испарения оксида. Если плотность тока высока на материале катода возникают местные тепловые перегрузки. По причине таких перегрузок приходится применять катоды специальных сложных конструкций. Количество конструкций катодов разнообразно, но все они могут быть разделены на катоды ламп низкого давления, высокого давления и сверхвысокого давления.

Рисунок 5. Трубчатая газоразрядная лампа низкого давления

Рисунок 6. Газоразрядная лампа высокого давления

Рисунок 7. Газоразрядная лампа сверхвысокого давления

Разнообразие материалов, применяемых для колб дуговых ламп, большие значения токов требуют решения вопроса о создании специальных вводов. Подробно о конструкциях газоразрядных ламп можно прочитать в специальной литературе.

Классификация ламп

Аналогично лампам накаливания газоразрядные лампы отличаются между собой областью применения, видом разряда, давлением и видом наполняющего газа или паров металла, использованием люминофора. Если смотреть глазами изготовителей газоразрядных ламп то они могут также отличаться особенностями конструкций, важнейшими из которых являются форма и размеры колбы (газоразрядного промежутка), используемый материал из которого изготавливается колба, материал и конструкция электродов, конструкция цоколей и выводов.

При классификации газоразрядных ламп могут возникнуть некоторые затруднения связанные с многообразием признаков, на основе которых они могут быть классифицированы. В связи с этим для классификации принятой в настоящее время и используемой в качестве основы системы обозначений газоразрядных ламп, определен ограниченный ряд признаков. Стоит отметить, что для ртутных трубчатых низкого давления, являющихся наиболее массовыми газоразрядными лампами, существует своя система обозначений.

Итак, для обозначения газоразрядных ламп пользуются следующими основными признаками:

  1. рабочее давление (лампы сверхвысокого давления – более 10 6 Па, высокого давления – от 3 × 10 4 до 10 6 Па и низкого давления – от 0,1 до 10 4 Па);
  2. состав наполнителя, в котором происходит разряд (газ, пары металла и их соединений);
  3. наименование используемого газа или пара металла (ксенон – Кс, натрий – На, ртуть – Р и тому подобные);
  4. вид разряда (импульсный – И, тлеющий – Т, дуговой – Д).

Форма колбы обозначается буквами: Т – трубчатая, Ш – шаровая; если на колбу лампы наносится люминофор то в обозначение добавляется буква Л. Лампы делятся также по: области свечения – лампы тлеющего свечения и лампы со столбом разряда; по способу охлаждения – на лампы с принудительным и естественным воздушным охлаждением, лампы с водяным охлаждением.

Ртутные трубчатые люминесцентные лампы низкого давления принято обозначать проще. Например, в их обозначении первая буква Л говорит о том, что лампа принадлежит к данному виду источников света, последующие буквы – а их может быть одна, две или даже три, обозначают цветность излучения. Цветность является важнейшим параметром обозначения, так как цветность определяет область использования лампы.

Классификация газоразрядных ламп может также вестись по их значимости в области техники освещения: дуговые лампы высокого давления с исправленной цветностью; дуговые трубчатые лампы высокого давления; дуговые высокого давления; дуговые натриевые лампы низкого и высокого давления; дуговые высокого давления; дуговые шаровые сверхвысокого давления; дуговые ксеноновые трубчатые и шаровые лампы; люминесцентные лампы низкого давления; электродосветные, импульсные и другие виды специальных газоразрядных ламп.

Искусственные источники освещения, использующие для выработки световых волн электрический разряд газовой среды в парах ртути, называют газоразрядными ртутными лампами.

Газ, закачанный в баллон, может находиться под низким, средним или высоким давлением. Низкое давление применяется в конструкциях ламп:

    линейных люминесцентных;

    компактных энергосберегающих:

    бактерицидных;

    кварцевых.

Высокое давление используется в лампах:

    дуговой ртутной люминофорной (ДРЛ);

    металлогенной ртутной с излучающими добавками (ДРИ) галогенидов металлов;

    дуговой натриевой трубчатой (ДНаТ);

    дуговой натриевой зеркальной (ДНаЗ).

Их устанавливают в тех местах, где необходимо освещать большие территории с малыми затратами электроэнергии.

Лампа ДРЛ

Особенности конструкции

Устройство лампы, использующей четыре электрода, схематично показано на картинке.

Ее цоколь, как и у обычных моделей, служит для подключения к контактам при вкручивании в патрон. Стеклянная колба герметично защищает все внутренние элементы от внешних воздействий. В ней закачан азот и размещены:

    кварцевая горелка;

    электрические проводники от контактов цоколя;

    два токоограничивающих сопротивления, вмонтированные в цепь дополнительных электродов

    слой люминофора.

Горелка выполнена в форме герметичной трубки из кварцевого стекла с закачанным аргоном, в которую помещены:

    две пары электродов - основной и дополнительный, расположенные на противоположных концах колбы;

    небольшая капелька ртути.

Источником света ДРЛ является разряд электрической дуги в среде аргона, протекающий между электродами в кварцевой трубке. Он возникает под действием приложенного к лампе напряжения в два этапа:

1. первоначально между близкорасположенными основным и зажигающим электродами начинается тлеющий разряд за счет движения свободных электронов и положительно заряженных ионов;

2. образование внутри полости горелки большого количества носителей зарядов приводит к быстрому пробою среды азота и образованию дуги через основные электроды.

Стабилизация пускового режима (электрического тока дуги и света) требует времени порядка 10-15 минут. В этот промежуток ДРЛ создает нагрузки, значительно превышающие токи номинального режима. Для их ограничения применяется .

Излучение дуги в парах ртути имеет голубой и фиолетовый оттенок и сопровождается мощным ультрафиолетовым излучением. Оно проходит через люминофор, смешивается с образуемым им спектром и создает яркий свет, приближенный к белому оттенку.

ДРЛ чувствительна к качеству питающего напряжения, а при его снижении до 180 вольт тухнет и не зажигается.

Во время создается высокая температура, передающаяся всей конструкции. Она влияет на качество контактов в патроне и вызывает нагрев подключенных проводов, которые из-за этого используют только с термостойкой изоляцией.

При работе лампы давление газов в горелке сильно увеличивается и осложняет условия для пробоя среды, что требует повышения приложенного напряжения. Если питание отключить и подать, то сразу лампа не запустится: ей надо остыть.

Схема подключения лампы типа ДРЛ

Четырехэлектродная ртутная лампа включается в работу через дроссель и .

Плавкая вставка защищает схему от возможных коротких замыканий, а дроссель ограничивает ток, проходящий через среду кварцевой трубки. Индуктивное сопротивление дросселя подбирается по мощности светильника. Включение лампы под напряжение без дросселя приводит к ее быстрому перегоранию.

Конденсатор, включенный в схему, компенсирует реактивную составляющую, вносимую индуктивностью.

Лампа ДРИ

Особенности конструкции

Внутреннее устройство лампы ДРИ очень похоже на то, которое используется У ДРЛ.

Но в ее горелке введена определенная доза добавок из гапогенидов металлов индия, натрия, таллия или некоторых других. Они позволяют увеличить выделение света до 70-95 лм/Вт и более с хорошей цветностью.

Колба выполняется в форме цилиндра или эллипса, показанного на рисунке ниже.

Материалом горелки может быть кварцевое стекло или керамика, которая обладает лучшими эксплуатационными свойствами: меньшее затемнение и больший срок службы.

Форма горелки в виде шара, используемая в современных конструкциях, повышает светоотдачу и яркость источника.

Принцип действия

Основные процессы, происходящие при выработке света ламп ДРИ и ДРЛ совпадают. Отличие состоит в схеме зажигания. ДРИ не может запуститься в работу от приложенного напряжения сети. Ей этой величины недостаточно.

Для создания дугового разряда внутри горелки необходимо к межэлектродному пространству приложить высоковольтный импульс. Его образование возложено на ИЗУ - импульсное зажигающее устройство.

Как работает ИЗУ

Принцип действия устройства создания высоковольтного импульса условно можно представить упрощенной принципиальной схемой.

Рабочее напряжения питания подводится на вход схемы. В цепочке диода D, резистора R и конденсатора C создается зарядный ток емкости. По окончании заряда через конденсатор выдается импульс тока сквозь открывшийся тиристорный ключ в обмотку подключенного трансформатора Т.

В повышающей напряжение выходной обмотке трансформатора создается высоковольтный импульс величиной до 2-5 кВ. Он поступает на контакты лампы и создает дуговой разряд газовой среды, обеспечивающий свечение.

Схемы подключения лампы типа ДРИ

Устройства ИЗУ выпускаются для газоразрядных ламп двух модификаций: с двумя или тремя выводами. Для каждого из них создается своя схема подключения. Она приводится прямо на корпусе блока.

При использовании двухконтактного устройства фаза сети через дроссель подключается к центральному контакту цоколя лампы и одновременно на соответствующий вывод ИЗУ.

Нулевой провод подводится на боковой контакт цоколя и свой вывод ИЗУ.

У трехконтактного устройства схема подключения нуля остается такой же, а подвод фазы после дросселя изменяется. Она подключается через два оставшихся вывода на ИЗУ, как показано на картинке ниже: вход на устройство осуществляется через клемму «В», а вывод на центральный контакт цоколя через - «Lp».

Таким образом, в состав пускорегулирующей аппаратуры (ПРА) для ртутных ламп с излучающими добавками входят в обязательном порядке:

    дроссель;

    импульсное зарядное устройство.

Компенсирующий величину реактивной мощности конденсатор может входить в состав ПРА. Его включение определяет общее снижение потребления энергии осветительным устройством и продление срока эксплуатации лампы при правильно подобранной величине емкости.

Ориентировочно ее значение в 35 мкФ соответствует лампам с мощностью 250 Вт, а 45 - 400 Вт. При завышенной емкости возникает резонанс в схеме, который проявляется «миганием» света лампы.

Наличие в работающей лампе импульсов высокого напряжения определяет использование в схеме подключения исключительно высоковольтных проводов минимальной длины между ПРА и лампой, не более 1-1,5 м.

Лампа ДРИЗ

Это разновидность описанной выше лампы ДРИ, внутри колбы которой частично нанесено зеркальное покрытие для отражения света, которое формирует направленный поток лучей. Он позволяет фокусировать излучение на освещаемый объект и снижать световые потери, возникающие из-за переотражений.

Лампа ДНаТ

Особенности конструкции

Внутри колбы этой газоразрядной лампы вместо ртути используются пары натрия, расположенные в среде инертных газов: неона, ксенона или других, либо их смесей. По этой причине их называют «натриевыми».

За счет такой модификации устройства конструкторам удалось придать им наибольшую эффективность работы, которая доходит до 150 лм/Вт.

Принцип действия ДНаТ и ДРИ один и тот же. Поэтому схемы подключения их одинаковы и при соответствии характеристик ПРА параметрам ламп их можно использовать для зажигания дуги в обеих конструкциях.

Однако производители металл галогенных и натриевых ламп выпускают пускорегулирующие устройства под конкретные виды своих изделий и поставляют их в едином корпусе. Эти ПРА полностью налажены и готовы к работе.

Схемы подключения ламп типа ДНаТ

В отдельных случаях конструкции ПРА для ДНаТ могут иметь отличия от представленных выше схем запуска ДРИ и выполняться по одной из трех нижеприведенных схем.

В первом случае ИЗУ включено параллельно контактам лампы. После зажигания дуги внутри горелки рабочий ток не течет через лампу (см принципиальную схему ИЗУ), что экономит потребление электричества. При этом дроссель испытывает воздействие высоковольтных импульсов. Поэтому он создается с усиленной изоляцией для защиты от зажигающих импульсов.

Из-за этого схема параллельного включения используется с лампами маленькой мощности и импульсом зажигания до двух киловольт.

Во второй схеме применяется ИЗУ, работающее без импульсного трансформатора, а высоковольтные импульсы вырабатывает дроссель специальной конструкции, имеющий отвод для подключения к контакту лампы. Изоляция обмоток этого дросселя также усиливается: она подвергается воздействию высоковольтного напряжения.

В третьем случае используется метод последовательного подключения дросселя, ИЗУ и контакта лампы. Здесь высоковольтный импульс от ИЗУ не поступает на дроссель, а изоляция его обмоток не требует усиления.

Недостаток этой схемы в том, что ИЗУ потребляет повышенный ток, за счет чего происходит его дополнительный нагрев. Это обуславливает необходимость увеличения габаритов конструкции, которые превышают размеры предшествующих схем.

Этот третий вариант конструкции наиболее часто используется для работы ламп ДНаТ.

Во всех схемах может быть использована подключением конденсатора так, как показано в схемах подключения ламп ДРИ.

Перечисленные схемы включения ламп высокого давления, использующих газовый разряд для свечения, обладают рядом недостатков:

    заниженный ресурс свечения;

    зависимость от качества питающего напряжения;

    стробоскопический эффект;

    шум работающего дросселя и ПРА;

    повышенное потребление электричества.

Большая часть этих недостатков устраняется применением электронных пусковых аппаратов (ЭПРА).

Они позволяют не только экономить до 30% электроэнергии, но и обладают возможностью плавного регулирования освещенности. Однако, стоимость таких устройств пока еще довольно высокая.

Современные виды ламп, которые применяются для освещения жилых, офисных, хозяйственно-бытовых помещений на сегодняшний день впечатляют своим разнообразием. Отличаются они друг от друга не только мощностью освещения, но и принципом действия, как следствие – разнообразием оттенков света, долговечностью и потребляемым количеством электроэнергии.

Соответственно, бывают виды ламп освещения, которые потребляют небольшое количество электроэнергии и при этом излучают яркое освещение и минимум тепла – эти лампы классифицируются, как энергосберегающие лампы, виды их по конструкции также разнообразны.

Нового поколения виды электрических ламп бывают таковыми, которые являются устойчивыми к перепадам напряжения в сети и имеют большее количество часов работы и циклов включения/выключения, что в сочетании с низким энергопотреблением значительно отличает их от традиционных ламп накаливания.

Однако, современные лампы освещения не ограничиваются этим, они имеют не только показатели светоотдачи, потребления электроэнергии и количество часов работы, существует и множество и других нюансов, как частота мерцания, экологичность, наличие/отсутствие встроенных выпрямителей тока, и многое другое.

Посему рассмотрим, какие бывают виды ламп на сегодняшний день, в первую очередь – основные положения, затем — рассмотрим принцип действия электрических ламп освещения из такого существующего их перечня:

  • лампы накаливания;
  • газоразрядные лампы;
  • светодиодные лампы.

Лампы накаливания являются наиболее распространенными на территории стран СНГ, и, пожалуй, самым древним видом ламп. Они не имеют ни каких особенных преимуществ, выделяют много тепла, потребляют много электричества, не имеют защиты от перепадов напряжения.

Единственное преимущество – теплое, подобное натуральному, солнечное освещение, которое, по мнению многих, не сравнится с явно искусственным освещением других видов ламп. Кроме того, они являются экологически чистыми в отличие от следующего вида ламп.

Газоразрядные лампы , а также их разновидность — люминесцентные лампы хороши тем, что имеют множество разновидностей, каждая из которых имеет определенное лучшее качество.

Ранее на территории СНГ были распространены классические, ртутные лампы дневного освещения, но на сегодня они в большей степени ушли в небытие и на их место пришли новые их разновидности.

Виды современных газоразрядных ламп применяются не только как обыкновенные источники электрического освещения в быту; они имеют декоративные разновидности, приемлемые для подсветки потолков, ниш и т. д.

Светодиодные лампы являются ничем иным, как современной альтернативой предыдущим двум видам ламп. Эти лампы – нового поколения энергосберегающие, экологичные и долговечные (стойкие к перепадам напряжения) осветительные электрические элементы.

Они имеют явное преимущество перед остальными видами ламп, но единственный недостаток – стоимость, так как технология их производства на сегодня новая и довольно дорогостоящая. Но их долговечность и экономичность, по мнению производителей, окупит разовые затраты на их приобретение.

Виды и принцип работы современных ламп накаливания

Принцип работы лампы накаливания основан на нагреве металлической спирали, находящейся в вакууме (лампы мощностью до 25Вт) или газе аргон или аргон+азот (средней мощности и высокомощные лампы) в герметично запаянной стеклянной колбе.

При прохождении через спираль, ток разогревает ее до температуры, равной впредь до 3000 градусов по Цельсию, вместе с этим происходит и излучение света, инфракрасных лучей.

Сама спираль выполнена из особо прочного и весьма тугоплавкого металла – вольфрама, а степень яркости освещения прямо пропорционально зависит от температуры нагрева; кроме того, газовая среда, в которой находится спираль, может содержать в себе частицы галогенов – соединений 17-ой гр. Таб. Менделеева (F, Cl, Br, I).

Современные лампы накаливания производятся из стекла с металлическим плафоном, имеющим резьбу, по средствам которой происходит фиксация в патроне, но имеются разновидности с контактно-зажимными и штыревыми типами соединений.

Виды ламп накаливания могут иметь четыре модификации, четыре условных обозначения, указывающих на тип спирали и окружающей ее среды в лампе накаливания: В (вакуумная), Б (биспиральная с аргоновым напылением), БО (биспиральная с аргоновым наполнением в опаловой колбе), Г (моноспиральная с аргоновым напылением).

Отдельным видом наиболее современных ламп накаливания являются галогенные лампы накаливания, отличие которых от вышеописанных обусловлено содержанием галогенных частиц в газовой среде лампы накаливания (частиц йода, хлора, брома), которые вступают в реакцию с испарившемся металлом с поверхности спирали.

После этого процесса металл возвращается на поверхность спирали по средствам температурного разложения получившегося соединения. Таким образом, они имеют больший КПД, срок годности и другие характеристики.

Что касается бытового назначения ламп накаливания, то они являются лампы общего назначения и обозначаются аббревиатурой ЛОН.

Виды и принцип работы современных газоразрядных ламп

Принцип работы газоразрядных ламп состоит в том, что видимое излучение света происходит вследствие возникновения разряда электричества в герметичной среде газа (неон, аргон, криптон, ксенон) или пара металлов (натрий, ртуть).

Таким образом, среда газа/пара металла – это и есть проводник тока, который от вольфрамового электрода с большим потенциалом (фазы, «+») проводит его к вольфрамовому электроду с меньшим потенциалом (нуля, «-»), излучая минимум тепла при высокой степени светоотдачи.

При этом в составе среды газа/пара могут применяться и галогены (фтор/F, хлор/Cl, бром/Br, йод/I), которые улучшают светоотдачу и остальные показатели газоразрядных ламп.

Существует также и газоразрядные люминесцентные лампы – лампы, в которых в результате разряда в парах ртути образуется невидимое для человеческого глаза ультрафиолетовое излучение (тепловое излучение), которое преобразуется в видимый свет при помощи находящегося на внутренних стенках колбы напыления люминофора (соединений галофосфата).

подразделяются на лампы низкого и высокого давления – по давлению внутри колбы.

Лампы высокого давления имеют в качестве основного преимущества высшую степень светоотдачи, и подразделяются в свою очередь по типу наполнителя на:

  • ртутные;
  • натриево-ртутные;
  • иодидо-металло-ртутные;
  • инертно-газовые.

Ртутные газоразрядные лампы высокого давления имеют напыление люминофора, является Люминесцентной лампой высокого давления и обозначается аббревиатурой ДРЛ.

Натриево-ртутные газоразрядные лампы высокого давления именуются также как просто натриевые и обозначаются аббревиатурой ДНаТ.

Иодидо-металло-ртутные газоразрядные лампы, а точнее лампы высокого давления с наполнителем — иодидами редкоземельных металлов с вмещением ртутных паров, именуются как металлогалогенные лампы и носят аббревиатуру ДРИ.

Инертно-газовые газоразрядные лампы высокого давления являются сугубо газовыми лампами, в которых применяются аргон, ксенон, неон, криптон или же их смеси и носят названия соответственно содержания газа.

Лампы низкого давления имеют преимущества только при освещении помещений, не нуждающихся в высокой мощности осветительных приборов; чаще всего – это декоративного освещения источники света, которые в зависимости от наполнителя бывают такие:

  • ртутные с инертным газом;
  • натриевые.

Лампы низкого давления с наполнителем паров ртути с примесью разновидностей инертного газа, именуемые как обыкновенные люминесцентные лампы (ЛЛ) и содержат еще слой люминесцена (см. принцип работы газоразрядных ламп).

Лампы низкого давления с наполнителем паров натрия – не являются таковыми, как предыдущие из-за совсем иного принципа действия, обозначаются аббревиатурой ДнаС.

Прочитав вышеописанные виды и принцип работы, Вы уже догадались, что по источнику света эти лампы подразделяются на газоразрядные и люминесцентные, а что касается низкого давления таких ламп, он на сегодняшний день их производят в качестве энергосберегающих.

Виды и принцип работы современных светодиодных ламп

Принцип работы светодиодных ламп состоит в излучении света от находящихся в этих лампах одиночных светодиодов или групп светодиодов, связанных специальной микросхемой, вмещающей в себе преобразователь сетевого тока в рабочий ток, на котором работают данные элементы.

Сам же светодиод представляет собой полупроводниковый аналоговый элемент, ранее использовавшийся для индикации в микроэлектронике. Этот элемент семейства диодов перерабатывает электрический ток в свет по средствам прохождения его (тока) через полупроводниковый кристалл. Кроме того, он имеет свойство пропускать ток только в одном направлении.

Если подробнее о принципе действия светодиода лампы, то он состоит из анода и катода, которые расположены по противоположным сторонам светоизлучающего кристалла, который легирован с этих сторон примесями: с одной – акцепторными, со второй — донорскими. В свою очередь кристалл находится на подложке из различного материала: кремния, силикона или находится в стеклянной оболочке.

При прохождении электрического тока от источника с большим потенциалом (анода, «+»), он движется через кристалл в направлении электрода с меньшим потенциалом (катод, «-»). Эту область перехода тока называют p-n переходом, в котором, собственно и возникает свечение при рекомбинации электронов и дырок в его области.

Виды светодиодных ламп как таковые, различные по конструкции, по составу внутренней среды и остальным техническим параметрам, присущим лампам накаливания и газоразрядным лампам, не существуют.

Имеются различия по форме плафонов (стандарты соответствуют остальным лампам), цветовой отдаче, и по рабочему питанию, что мы рассмотрим подробнее. Касаемо последнего, светодиодные лампы различают:

  • питание 4В;
  • питание 12В;
  • питание 220В.

Светодиодные лампы с питанием 4В применяются для слабомощных источников освещения, часто применяются в декоративных светильниках — «свечках». Соответственно, применяются как вспомогательное локальное, часто-густо декоративное освещение.

Светодиодные лампы 12В являются заменой современных ламп накаливания, также и галогенных ламп, а также разновидностей газоразрядных/люминесцентных ламп. Они имеют достойную мощность освещения при невысокой теплоотдачи, что делает их не только хорошими источниками общего, но и мебельного встроенного освещения.

Светодиодные лампы 220В – используются для высокомощного освещения, входное питание 220В преобразуется в меньшее по средствам встроенного трансформатора и питает светоизлучающие элементы (светодиоды). Единственный вид светодиодных ламп, которые не требуют отдельного подключения трансформатора.

В соответствии с новыми нормами по освещению для осветительных установок рекомендуется применять в первую очередь газоразрядные лампы как наиболее экономичные.

Рис. 1.5. Вольт-амперная характеристика газоразрядного промежутка:
1 - тихий разряд; 2 - переходная область; 3 - нормальный тлеющий разряд; 4 - аномальный тлеющий разряд; 5 -дуговой разряд.
Работа газоразрядных источников света основана на использовании электрического разряда в газовой среде и парах металла. Чаще всего для этого применяют аргон и пары ртути. Излучение происходит за счет перехода электронов атомов ртути с орбиты с высоким содержанием энергии на орбиту с меньшей энергией. При этом возможно несколько видов электрических разрядов (например, тихий, тлеющий, дуговой). Дуговой разряд имеет наибольшую плотность электрического тока и как следствие этого создает наибольший световой поток.
На рисунке 1.5 изображена вольтамперная характеристика электрического разряда в газе при изменении тока от нуля до предельного значения.
При определенных плотностях тока характер процесса ионизации межэлектродного промежутка - лавинообразный. В этом случае с увеличением тока сопротивление межэлектродного промежутка резко уменьшается, что ведет, в свою очередь, к еще большему увеличению тока и, как следствие этого, к аварийному режиму. Такой режим может возникнуть, если включить газоразрядный источник света непосредственно в сеть. При увеличении напряжения от нуля до значения (рис. 1.5) ток плавно увеличивается. Дальнейшее увеличение напряжения до значения UT приводит к неустойчивой точке в, после которой ток резко возрастает за счет уменьшения сопротивления промежутка при лавинообразной ионизации. Ограничить этот ток, а следовательно, и стабилизировать режим работы в области 5 можно путем включения токоограничивающего сопротивления, называемого балластным, так как мощность на нем расходуется бесполезно Значение балластного сопротивления можно определить графически. Для этого, имея вольтамперную характеристику газоразрядного источника излучения, необходимо задаться рабочей точкой А и величиной напряжения сети Uc.
Тогда
(1.17)
Точка А характеризуется двумя видами сопротивления: статическим
и динамическим


Рис. 1.6. Изменение положения рабочей точки при изменении напряжения сети (а) и сопротивления балласта (б).
Рис. 1.7. Влияние величины Ua/Ue на стабильность работы газоразрядной лампы npи изменении напряжения питающей сети.
Динамическое сопротивление на падающем участке рассматриваемой волы амперной характеристики отрицательно.
Изменить положение рабочей точки А можно либо путем изменения сопротивления R (рис. 1.6,6), либо путем изменения напряжения сети Uc (рис. 1.6,с). При этом изменяется как статическое Rлc, так и динамическое Rлд сопротивление лампы. Необходимо отметить, что статическое сопротивление лампы Rлд вместе с сопротивлением балласта определяют рабочий ток в каждой точке, а динамическое- устойчивость горения дуги. Устойчивость горения дуги определяется из условия
(1-18)
Это условие соблюдается на участке вольт-амперной характеристики правее точки Д. При этом чем дальше вправо рабочая точка отстоит от точки Д, тем устойчивей горит дуга, так как уменьшается реакция тока на случайные небольшие изменения напряжения сети Uc.
Работа газоразрядной лампы в любой рабочей точке возможна при различных значениях напряжения сети Uc. Для этого необходимо подобрать сопротивление балласта таким, чтобы рабочий ток оставался постоянным (рис. 1.7). Однако стабильность работы лампы при этом будет различной. Чем выше напряжение питающей сети Uc и соответственно сопротивление балласта Rб, тем меньше влияют отклонения напряжения на ток лампы. Но следует помнить, что при этом возрастают потери мощности в балластном сопротивлении. Учитывая это, в практике рекомендуется балластное сопротивление брать таким, чтобы соблюдалось условие, позволяющее получить достаточную устойчивость работы газоразрядных ламп при минимальных потерях в балласте.
Для работы на постоянном токе используются активные балласты, на переменном - индуктивные и емкостные (иногда и активные).
Все газоразрядные источники по значению рабочего давления делятся на лампы низкого, высокого и сверхвысокого давления.
Люминесцентные лампы низкого давления представляют собой стеклянную цилиндрическую колбу, внутренняя поверхность которой покрыта люминофором. В торцы колбы вварены стеклянные ножки. На ножках смонтированы вольфрамовые электроды в виде биспиралей, покрытые слоем оксида (окисла щелочно-земельных металлов), обеспечивающего хорошую эмиссию электронов. Для защиты от бомбардировки в анодный период к электродам приварены проволочные экраны. На концах колба имеет цоколи со штырьками. Из колбы лампы откачан воздух и введен в нее аргон при давлении около 400 Па с небольшим количеством ртути (30-50мг.).
В люминесцентных лампах световая энергия возникает в результате двойного преобразования энергии электрического тока. Во-первых, электрический ток, протекая между электродами лампы, вызывает электрический разряд в парах ртути, сопровождающийся излучением (электролюминесценция). Во-вторых, возникающая при этом лучистая энергия, большая часть которой представляет собой ультрафиолетовое излучение, воздействует на люминофор, нанесенный на стенки колбы лампы и преобразуется в световое излучение (фотолюминесценция). В зависимости от состава люминофора получают видимые излучения различного спектрального состава. Наша промышленность выпускает люминесцентные лампы пяти типов: дневного света ЛД, дневного света с улучшенной цветопередачей ЛДЦ, холодно-белого света ЛХБ, белого света ЛБ и тепло-белого ЛТБ. Колбы люминесцентных ламп чаще всего имеют прямолинейную, образную и кольцевую формы. Люминесцентные лампы выпускаются мощностью 15, 20, 30, 40, 65 и 80 Вт. В сельском хозяйстве применяются лампы преимущественно мощностью 40 и 80 Вт (табл. 1.3).
Таблица 1.3
Характеристики люминесцентных ламп, используемых в сельском хозяйстве


Тип лампы

Мощность,
Вт

Напряжение на лампе, В

Сила тока, А

Световой поток, лм

В настоящее время выпускаются новые лампы с улучшенной цветопередачей типа ЛЕ.
По сравнению с лампами накаливания люминесцентные лампы имеют более благоприятный спектральный состав излучения, большую световую отдачу (60 ... 70 лм-Вт-1) и больший срок службы (10 000 ч).
Кроме того, в сельском хозяйстве применяются специальные лампы низкого давления: фитолампы - для выращивания растений, эритемные - для УФ облучения животных и птиц, бактерицидные- в установках обеззараживания. Эритемные и фитолампы имеют специальный люминофор, бактерицидные - без люминофора (табл. 1.4)
Все люминесцентные лампы низкого давления включаются в сеть через балластное сопротивление.

Характеристики эритемных, бактерицидных и фитоламп


Тип лампы

Мощность,
Вт

Напряжение,
В

Эритемный поток, мэр

Бактерицидный поток, б

Световой поток, лм

Следует помнить, что зажигание люминесцентных ламп без специальных мероприятий осуществляется при напряжении U3, как правило, больше сетевого Uc. Одним из способов снижения напряжения зажигания U3 является предварительный подогрев электродов, облегчающий эмиссию электронов. Этот подогрев можно осуществлять, используя стартерные и бесстартерные схемы (рис. 1.8).

Рис. 1.8. Схема включения люминесцентной лампы низкого давления:
1 - зажим сетевого напряжения; 2 - дроссель; 3, 5 - электроды лампы; 4 - трубка; 6, 7 - электроды стартера; 8 - стартер.
Стартер представляет собой миниатюрную неоновую лампу, один или оба электрода которой выполнены из биметалла. При нагревании эти электроды могут между собой замыкаться. В исходном состоянии они разомкнуты. При подаче напряжения на зажимы 1 все оно оказывается практически приложенным к зажимам стартера 6 и 7 и в его колбе 8 возникает тлеющий разряд. За счет протекающего при этом тока выделяется тепло, которое нагревает подвижной биметаллический контакт 7, и он замыкается с неподвижным контактом 6. Ток в цепи в этом случае резко возрастает. Его величина оказывается достаточной для нагрева электродов 5 и 5 люминесцентной лампы, выполненных в виде спиралей. За 1...2 с электроды лампы разогреваются до 800...900°С. Так как разряда в это время в колбе стартера нет, электроды его остывают и размыкаются.
В момент разрыва цепи в дросселе 2 возникает э. д. с. самоиндукции, значение которой пропорционально индуктивности дросселя и скорости изменения тока в момент разрыва цепи. Образовавшееся за счет э. д. с. самоиндукции повышенное напряжение (700... 1000 В) оказывается приложенным к электродам лампы, подготовленным к зажиганию. Между электродами возникает дуговой разряд, и лампа 4 начинает светиться. В этом режиме сопротивление лампы оказывается примерно одинаковым с сопротивлением последовательно включенного дросселя и напряжение на ней снижается приблизительно до половины напряжения сети Это же напряжение приложено к стартеру, включенному параллельно лампе, но стартер больше не зажигается, ибо напряжение его зажигания устанавливается в пределах

Таким образом, стартер и дроссель выполняют важные в процессе зажигания и работы функции. Стартер: 1) замыкает цепь «спирали электродов - дроссель», ток, протекающий при этом, нагревает электроды, облегчая зажигание лампы за счет термоэлектронной эмиссии; 2) разрывает после разогрева электродов лампы электрическую цепь и тем самым вызывает импульс повышенного напряжения на лампе, обеспечивающего пробой газового промежутка.
Дроссель: 1) ограничивает ток при замыкании электродов стартера; 2) генерирует импульс напряжения для пробоя лампы за счет э. д. с. самоиндукции в момент размыкания электродов стартера; 3) стабилизирует горение дуги после зажигания.
Так как стартер является самым ненадежным элементом в схеме зажигания, разработаны и бесстартерные схемы. Предварительный подогрев электродов в этом случае осуществляется от специального накального трансформатора.
Для люминесцентных ламп низкого давления выпускаются специальные пускорегулирующие аппараты (ПРА).
Стартерные ПРА обозначаются 1УБИ, 1УБЕ, 1УБК (цифра указывает число ламп, работающих от одного ПРА, У - стартерный, Б - балласт, И - индуктивный, Е - емкостный; К - компенсированный, т.. е. повышающий коэффициент мощности осветительной установки до 0,9...0,95). Для двух ламп соответственно 2УБИ, 2УБЕ, 2УБК.
Бесстартерные аппараты имеют в своем обозначении букву А: АБИ, АБЕ, АБК. Например, марка ПРА 2АБК-80/220-АНП расшифровывается так: двухламповый бесстартерный аппарат, компенсированный, мощность каждой лампы 80 Вт, напряжение сети 220 В, антистробоскопический (А), для независимой установки (Н), с пониженном уровнем шума (П).
Одним из недостатков газоразрядных ламп является пульсация светового потока, вызывающая стробоскопический эффект - мелькание быстро движущегося предмета. Для уменьшения величины пульсации светового потока рекомендуется включать лампы на разные фазы или применять специальные антистробоскопические ПРА.

Рис. 1 9. Лампа ДРТ (а) и схема ее включения (б):
1 - трубка из кварцевого стекла; 2 - электрод; 3 - хомут с держателем; 4 - токопроводящая полоса.
Рис. 1.10 Четырехэлектродная лампа ДР-С (а) и схема ее включения (б):
1 - ртутно-кварцевая горелка; 2 - колба; 3 - люминофор; 4 - поджигающие электроды; 5 - основные электроды; 6 - токоограничивающие резисторы.
При включении люминесцентных ламп на напряжение повышенной частоты увеличивается их световая отдача, уменьшаются размеры балласта и потери в нем, уменьшается величина пульсации светового потока.
Газоразрядные лампы высокого давления. Наиболее распространенными в сельскохозяйственном производстве являются лампы типа ДРТ - дуговая, ртутная, трубчатая и ДРЛ - дуговая, ртутная, люминесцентная.
Лампа ДРТ представляет собой прямую трубку 1 из кварцевого стекла (рис. 1.9,а), в торцы которой впаяны электроды 2. Трубка заполнена аргоном и небольшим количеством ртути. Так как кварцевое стекло хорошо пропускает УФ излучение, лампа в основном используется для УФ облучения животных и птицы и для обеззараживания воды, продуктов, воздуха и т. д.
Включается в сеть лампа через дроссель (рис. 1.9,6). Зажигание осуществляется кратковременным нажатием кнопки S. При этом через дроссель L и конденсатор С1 протекает ток. При размыкании кнопки ток резко уменьшается и за счет э. д. с. самоиндукции дросселя резко повышается напряжение на электродах лампы, что способствует ее зажиганию. Металлическая полоса Я, подключенная через конденсатор С2, обеспечивает перераспределение электрического поля внутри лампы, что облегчает зажигание лампы.
Лампы ДРЛ используются для освещения. Они могут быть как двух- так и четырехэлектродными. В настоящее время выпускаются только четырехэлектродные лампы, конструкция и схема включения которых показаны на рисунке 1.10. Ртутно-кварцевая горелка I является источником УФ излучений. Колба 2 выполнена из термостойкого стекла и с внутренней стороны покрыта люминофором 3, который преобразует УФ излучение горелки в световое. Для облегчения зажигания четырехэлектродная лампа имеет поджигающие электроды 4. Разряд возникает сначала между поджигающим и основным электродами 5, а затем между основными электродами (рабочий промежуток).
Перспективными для освещения являются металлогалоидные лампы высокого давления типа ДРИ. В колбы этих ламп добавляются иодиды натрия, таллия и индия, что позволяет увеличить световую отдачу в 1,5...2 раза по сравнению с лампами ДРЛ.
Для использования в теплицах на базе лампы ДРЛ разработаны специальные фитолампы типа ДРФ и ДРЛФ. Колба этих ламп выполнена из стекла, выдерживающего при нагретом состоянии брызги холодной воды и покрыта специальным люминофором, имеющим повышенную фитоотдачу. В верхней части колбы нанесен отражающий слой.