Какие растения встречаются исключительно на суше. Видовое богатство суши — следствие хорошо развитой сосудистой сети у цветковых растений. Источник энергии рифа

Растения захватывают сушу

Жестокий новый мир...

В те далекие времена, когда суша была голой каменистой пустыней, в морях и океанах Земли царствовали водоросли – тогда единственные представители царства растений. Среди водорослей встречались и просто устроенные одноклеточные организмы, и гораздо более совершенные растения со сложным ветвлением слоевища, части которого внешне напоминали листья и стебли. У некоторых наиболее сложно устроенных красных, бурых и зелёных водорослей возникли специальные органы полового размножения: женские – архегонии и мужские – антеридии, в которых под защитой толстых стенок развивались половые клетки – яйцеклетки и сперматозоиды. Большинство ученых склонно считать, что предками всех наземных растений были именно зелёные водоросли с разветвленным слоевищем и сложно устроенными половыми органами, которые могли защитить от высыхания половые клетки первых наземных обитателей.

Выход растений на сушу произошел примерно 450 млн. лет назад, когда в атмосфере сформировался тонкий слой озона, защищающий живые организмы от губительного действия космической радиации. До этого жизнь могла развиваться только в воде. Этому великому событию предшествовало полтора миллиарда лет, в течение которых происходило накопление кислорода в атмосфере планеты.

Чтобы выйти на сушу и завоевать ее, растениям пришлось решить ряд проблем, с которыми они не сталкивались в водной среде. И самой важной среди них стала проблема экономии воды.

Клетки живого организма на 90–98% состоят из воды, именно вода является той универсальной средой, в которой осуществляются все жизненно важные процессы клетки. Даже незначительная потеря воды представляет для живого организма смертельную опасность. В водной среде растения «не задумываются» над этим, но на суше они оказываются «лицом к лицу» с угрозой иссушения, поскольку вода постоянно испаряется с поверхности растения через оболочки клеток.

Как предотвратить губительную потерю воды? Конечно, скажете вы, растению нужно каким–то образом уменьшить количество испаряемой влаги, неплохо бы «изобрести» защитный слой, препятствующий испарению воды с поверхности растения. Такой слой действительно возник.

Кутикула (от латинского слова «cutis» – кожа) – воскоподобное вещество, плохо пропускающее водяные пары, покрывает все органы высших растений, подверженные иссушающему действию солнечных лучей и ветра. Слой кутикулы вырабатывает кожица – особая покровная ткань.

Водяной пар – тот же газ, поэтому, не давая испаряться парам воды, кожица и кутикула одновременно препятствуют свободному прохождению других газов – кислорода и углекислого газа, необходимых растению для дыхания и питания. Поэтому в процессе эволюции в слое кожицы возникли мелкие невидимые простым глазом отверстия – устьица. Через устьица и происходит газообмен между растением и окружающим растение воздухом. Без устьиц растение просто задохнулось бы.

Поперечный срез листа Газообмен и испарение воды могут происходить только через устьица (1) отверстия в кожице (2), свободные от слоя воздухонепроницаемой кутикулы (3). Замыкающие клетки устьица (4) способны открываться и закрываться , регулируя испарение воды

Кутикула и устьица выполняют в организме растения совершенно противоположные задачи. Кутикула препятствует испарению воды, а через устьица постоянно происходит ее «утечка». Но теперь эта «утечка» поставлена под контроль растения – в зависимости от влажности воздуха и содержания воды в почве устьица открываются то больше, то меньше, а то и вовсе наглухо «задраиваются» до лучших времен.

Но кутикулу с устьицами еще предстояло развить, а пока, на первом этапе освоения суши, растения–первопроходцы столкнулись с массой других проблем. Одна из них также связана с водой – ее нужно не только экономить, но и получать из внешней среды. Корни растения, расположенные в почве, более или менее обеспечены влагой, но надземные органы нуждаются в бесперебойной подаче воды, постоянно теряющейся через устьица. Значит, между корнями растения и его надземной частью должны возникнуть транспортные магистрали, по которым вода с растворенными в ней минеральными веществами (их, между прочим, тоже в воздухе не сыскать) поставлялась бы от корней к самым удаленным от земли веточкам и листьям. Такими транспортными магистралями стали элементы проводящей системы растений: сосуды и ситовидные трубки. Ситовидные трубки поставляют воду вниз, доставляя органические вещества, полученные листьями, к корням, которые, погрузившись в почву, оказались отрезанными от света и неспособными к фотосинтезу.

Прочные одревесневшие стенки сосудов древесины заодно придают стеблю растения дополнительную жесткость и прочность, т. е. участвуют в решении третьей проблемы первопоселенцев суши – необходимости поддерживать тело в вертикальном положении.

Низшие растения – водоросли, живущие в воде, могут достигать 90 м в длину (некоторые представители ламинариевых водорослей), и такие размеры подводных обитателей никого не изумляют. Ведь и самое крупное животное планеты – синий кит (более 30 м в длину) тоже обитает в водной среде. В воде не надо тратить усилий на поддержание тела в пространстве, она сама поддерживает тебя. Вспомните, в воде вы можете стоять с полностью расслабленными мышцами, а на суше для поддержания прямостоячего положения вам приходится постоянно напрягать мышцы спины, живота и ног.

Казалось бы, самые крупные растения должны встречаться в морях и океанах, но вот что удивительно: в отличие от животных, самые крупные растения встречаются не в воде, а на суше. Отдельные представители растительного мира достигают высоты более 100 м. Это самые высокие деревья планеты: секвойя–дендрон гигантский (зарегистрированный рекорд – 135 м), эвкалипт царственный (109 м), секвойя вечнозеленая (110 м). Вероятно, этот парадокс отчасти связан с тем, что для питания растениям необходим свет, поэтому часть растения должна возвышаться над землей и чем выше, тем лучше. Во все времена находились растения, выбиравшие стратегию гигантизма. Размеров деревьев (да они и были деревьями) достигали древние вымершие хвощи – каламиты и плауны–чешуедревы, а среди папоротников и до сих пор сохранились древовидные представители, напоминающие своим внешним видом пальмы. Но, стремясь ближе к солнцу, растения должны научиться поддерживать себя в вертикальном положении, что в воздухе сделать непросто.

Каким образом растения могут поддерживать себя в разреженной воздушной среде и противостоять действию ветров? В этом растению помогают специальные механические ткани – своеобразный скелет растения. Механические ткани состоят из клеток, стенки которых пропитаны веществом, придающим клеткам необычайную жесткость и прочность. Это вещество – уже знакомый нам лигнин, который мы упоминали в разделе, посвященном грибам. У растений, погруженных в воду, механические ткани не развиваются за ненадобностью. В отсутствии механических тканей у подводных растений легко убедиться, вытащив их из воды, – их стебли и листья сразу поникают, словно увядшие, они не способны поддерживать вертикальное положение.

Секвойядендрон гигантский

Конечно, мы перечислили далеко не все сложности, возникшие перед растениями, заселившими сушу. Даже при условии решения проблемы иссушения, остается вопрос о том, как размножаться половым путем. У водорослей мужские гаметы плывут к яйцеклеткам прямо в воде: всё просто. А на суше примитивным высшим растениям, унаследовавшим от предков «водный» способ полового размножения, приходится ждать дождя, чтобы сперматозоиды могли доплыть до яйцеклеток по пленке воды. Окончательно освободить процесс размножения от водной зависимости удалось только цветковым, но сейчас давайте познакомимся с первооткрывателями суши и посмотрим, какие изменения внешнего и внутреннего строения происходили у растений по мере освоения наземной среды обитания.

Из книги Большая Советская Энциклопедия (АИ) автора БСЭ

Из книги Большая Советская Энциклопедия (БЕ) автора БСЭ

Из книги Большая Советская Энциклопедия (ВЕ) автора БСЭ

Из книги Большая Советская Энциклопедия (ЖИ) автора БСЭ

Из книги Большая Советская Энциклопедия (КО) автора БСЭ

Из книги Большая Советская Энциклопедия (ЛЕ) автора БСЭ

Из книги Большая Советская Энциклопедия (РА) автора БСЭ

Из книги Большая Советская Энциклопедия (СО) автора БСЭ

Из книги Большая Советская Энциклопедия (ЯВ) автора БСЭ

Из книги Странности нашей эволюции автора Харрисон Кит

Из книги Я познаю мир. Живой мир автора Целлариус А. Ю.

Выход на сушу Первые рыбы вышли на сушу более 360 миллионов лет назад, в эпоху чередующихся засух и наводнений, когда эволюция создала много новых типов рыб.Никто точно не знает, почему рыбы вышли на сушу, но сегодняшние позвоночные успешно осваивают различные среды

Из книги Универсальный энциклопедический справочник автора Исаева Е. Л.

Растения Их ещё недавно, когда к царству растений относились и водоросли, называли высшими растениями. Ныне водоросли ушли в царство протист, и теперь титул «высшие» потерял смысл. Других в растительном царстве просто нет. Растения в целом – сухопутные существа. Обратно

Из книги Автономное выживание в экстремальных условиях и автономная медицина автора Молодан Игорь

Выход на сушу Класс костных рыб делится на два подкласса – лучеперые и лопастеперые. Лучеперые ударились в бурную эволюцию, завоевали все водоемы планеты, и сейчас именно они представляют класс костных рыб. Лопастеперым это почему–то не удалось. Они отделились от

Из книги Учебник по выживанию в экстремальных ситуациях автора Молодан Игорь

Растения Авран лекарственныйАдонис весеннийАдонис волжскийАлтей лекарственныйАргусия сибирскаяАстрагал бороздчатыйАстрагал длинноногийАстрагал коротколопастныйАстрагал рогоплодныйАстрагал ХеннингаАстрагал ЦингераАстрагал шершавыйБагульник болотныйБелозор

Из книги автора

6.11.1. Растения В связи с небольшой энергетической ценностью растительного мира следует выбирать растения, произрастающие в большом количестве, либо с большой пищевой массой, высококалорийные растения, произрастающие в прибрежной части водоемов (рогоз, чилим, тростник,

Из книги автора

Растения Энергетическая ценность многих растений невысока (не более 30–40 ккал на 100 г пищевой массы), так что насытиться ими сложно. Поэтому в первую очередь следует искать растения, произрастающие в большом количестве либо с большой пищевой массой, высококалорийные

Кто были первые наземные существа — точно неизвестно: сами они в палеонтологическую летопись не попали, и мы судим об их существовании по косвенным признакам. Почва образуется из горных пород лишь при участии живых организмов . С другой стороны, в воде процесс почвообразо-вания идти не может — только на суше. Значит, если в некое время существовали почвы, то должна была существовать и наземная жизнь... Почва может захорани-ваться, и попадать в геологическую летопись точно так же, как жи-вотные и растения. Так вот, самые древние из этих ископаемых почв имеют возраст 2 миллиарда лет . В почвообразовании в те времена участвовали низшие растения: на-земные водоросли и лишайники . Похожие водоросли и сейчас встречаются на суше в виде зеленоватого налета на влажных кам-нях и коре деревьев. Лишайники же — союз, образованный водорослями и грибами , — способны жить в самых суровых условиях.

Это было нечто похожее на болото современного типа, но без торфяного слоя. То есть совершен-но особенное, такого на Земле никогда больше не существовало; эти экосистемы иногда называют «лесами-водоемами» . Упавшие деревья здесь не разрушались древогрызущими насекомыми , грибками и бактериями , а слеживались под водою без доступа воздуха в плотную массу и постепенно превращались в каменный уголь . Большая часть мировых запасов каменного угля образова-лась именно в это время; отсюда и название этого периода.

«Изобретение» семени — заслуга голосе-менных растений. Среди них хорошо знакомы современные хвойные — ель и со-сна. Так вот, семя — это окруженный защит-ной оболочкой зародыш растения с запасом «продуктов» на первое время. Семени не страшны ни высыхание, ни ультрафиолет. Дождавшись благоприятных условий, за-родыш прорастает сквозь оболочку. Такое «изобретение» позволило голосеменным в конце палеозоя уйти от берегов водоемов и заселить огромные пространства материков от

До сих пор известны только две находки очень древних ископаемых наземных . В верхнесилурийских слоях Центральной Европы были найдены остатки безлистных растений длиной до 10 сантиметров; это самые древние из известных нам наземных растений. Вторая находка была сделана в Австралии, в слоях раннедевонского возраста. Она представляет собой окаменевшие стебли (до 25 сантиметров длиной) растения, очень близкого к современным плаунам Lycopodium (фото 23), стебель которых стелется по земле и образует вертикальные отростки. Lycopodium - это не только наземное растение, это также и сосудистое растение. Наличие ископаемых растений такого типа означает не только существенный прогресс эволюции, но также и крупный географический сдвиг - выход растительной жизни из на сушу.

Фото 23. А. Древнейшее из известных нам наземных растений. Ископаемый отпечаток растения рода Baragwanathia в нижнедевонских слоях юго-восточной Австралии. Б. Близкородственное ему современное растение, плаун Lycopodium lucidulum с побегами длиной 10-12 см.

Совершенно ясно, что к позднесилурийскому времени растения уже заселили сушу. Но сколько времени занял этот процесс? Между появлением древнейших известных нам морских (около одного миллиарда лет назад) и древнейших наземных растений, обнаруженных в позднем силуре Европы (приблизительно 430 миллионов лет назад), прошло около 570 миллионов лет. Это действительно большой отрезок времени, почти равный продолжительности всего фанерозоя. Хотя мы и признаем, что заселение суши мягкими морскими водорослями и развитие у них сосудистой системы были их замечательными «завоеваниями», мы не должны забывать, что эти растения имели в своем распоряжении очень много времени, достаточно много для миллионов «проб и ошибок». Если вспомнить, что за такое длительное время даже ничтожная на первый взгляд вероятность почти наверное реализуется, то мы вправе усомниться в том, что водорослям действительно потребовалось так много времени (570 миллионов лет) для завоевания суши. Может быть, где-нибудь существуют кембрийские или даже более древние слои, содержащие остатки наземных растений, и если это так, то когда-нибудь они, вероятно, будут найдены и определены. И тогда сократится большой пробел в известной нам истории развития растений.

Путь из моря на сушу. Пытаясь заполнить этот пробел логическими рассуждениями, мы можем представить, каким образом произошел этот великий переход растений из моря на сушу. , жившие в море, выделяли свободный кислород, который поступал в , приближая постепенно ее состав к современному. Кислород (Точнее, озон - прим. ред.) создал экран, защищающий от смертоносного излучения , и таким образом позволил им переселиться из моря на сушу, не подвергаясь опасности немедленной гибели. Этими переселенцами были растения, очевидно, зеленые водоросли. Они сами подготовили условия для этого переселения, выделяя в ходе многих лет процесса фотосинтеза огромные массы свободного кислорода, который превратил атмосферу Земли в защитный экран.

Естественно предположить, что зеленые водоросли расселялись вдоль побережий и проникали в устья . Через миллионы лет они, вероятно, распространились вверх по рекам, перейдя из соленой морской воды через солоноватую устьев рек в пресную речную. Мы можем представить себе, что временами медленные поднятия на некоторых участках суши преграждали путь рекам и создавали . С течением времени озера могли неоднократно изменять уровень и даже высыхать, а потом снова возникать. Непрекращающееся взаимодействие экзогенных и эндогенных процессов могло принимать тысячи различных форм.

Конечно, мы не знаем, сколько видов водорослей прошло этот путь. Но по крайней мере один из них выжил в условиях пересыхающего водоема. Живя в воде, водоросли поглощали пищу всей своей поверхностью. Но когда они стали «выходить» на сушу, им пришлось отказаться от этого простейшего способа питания. Первый шаг в этом направлении мог быть вызван опытом жизни в условиях временного пересыхания, возможно, в устьевой части речной долины во время отлива. У растений развился подобный коже покров, защищавший их от высыхания; в то же время этот новый покров делал возможным поступление воды в растения и ее диффузию.

Одновременно неровности тела растения должны были преобразоваться в примитивные органы со специализированными функциями. Один такой выступ, возможно нитевидный, мог использоваться для прикрепления к грунту, а также для поглощения воды и растворенных питательных веществ из грунта. Должны были также развиваться дополнительные сосудистые ткани, служившие опорой для тянущегося вверх растения. Иначе говоря, постепенно растение стало уже существенно отличаться от прежней мягкой водоросли. Оно становилось примитивным наземным растением, обладающим подобием , стеблем и простейшей сосудистой системой. Однако голые зеленые стебли и тонкие ветви, лишенные , все еще напоминали водоросли,

К позднесилурийскому времени (возможно и раньше) такая стадия водорослеобразных растений была достигнута и пройдена. Как только закончился сложный процесс выхода растений на сушу, его естественным результатом явилось расселение и приспособление их к различным местным условиям, что должно было протекать сравнительно легко. Основные предпосылки для этого - наличие , воды, минеральных питательных веществ в почве и углекислого газа в воздухе - уже существовали. Поверхность , напоминавшая поверхность , начала одеваться зеленым покровом.

Древняя наземная растительность; бессеменные растения. Некоторое представление о древнейшей растительности дают остатки окаменевших растений, встречающиеся местами в пластах горных пород, например в речных отложениях первой половины девонского времени. Эти растения принадлежат к нескольким различным родам, но все они относятся к примитивным группам, впоследствии исчезнувшим. Большая часть их имела стелющиеся по земле стебли с отростками, поднимавшимися на несколько десятков сантиметров, без листьев или с зачатками листьев. Такие растения не имели семян. По найденным ископаемым остаткам были сделаны реконструкции, одну из которых вы видите на фото 24.

Фото 24. Реконструкция раннедевонского ландшафта, па котором показаны растения нескольких родов, найденные в ископаемом состоянии в различных районах земного шара. Для масштаба показана дорожная сумка.

По мере того как растения приспосабливались к различным условиям, они постепенно дифференцировались, образуя все большее количество видов. К концу девона, то есть 360 миллионов лет назад, растительность стала иметь уже совсем другой облик. Выделялись растения, предки настоящих папоротников. Они не давали семян; некоторые из них достигали 12 метров в высоту и около одного метра в диаметре ствола у основания. Представив себе эти размеры, мы можем сказать, что первые леса на Земле начали возникать в позднедевонское время. Кроме древовидных растений, в этот период времени существовали крупные хвощи и плауны, потомки более мелких видов, живших ранее в девоне. На фото 25 изображена другая реконструированная картина, предположительно показывающая облик позднедевонского ландшафта.

Фото 25. Реконструкция ландшафта позднедевонского времени, на котором показаны настоящие папоротники (П), примитивные лепидодендроны - «чешуйчатые деревья» (Ч) и меньшие по размеру растения.

Позднепалеозойская флора; семенные растения. Следующим важным событием в истории растений было появление семян, на что ясно указывают ископаемые из каменноугольных пластов. Семена эти были довольно примитивными: они не имели оболочки и развивались на плодолистиках. Яйцеклетка семени оплодотворялась сперматозоидами того же самого растения. Среди древнейших растений, размножавшихся семенами, были семейные папоротники. Современные потомки других древнейших растений, размножавшихся семенами, - хвойные (сосна, ель, тсуга) - до сих пор размножаются таким же образом. Как и семенные папоротники, хвойные и другие подобные растения принадлежат к группе так называемых голосеменных, и все они имеют семена самого примитивного типа.

Однажды появившись, голосеменные растения уже не обязательно должны были держаться вблизи увлажненных мест, потому что для их способа размножения не требовалось даже тонкой пленки воды. Они занимали возвышенности, горы и сухие участки, ранее лишенные растений, и в результате этого зеленый растительный покров распространился по Земле еще больше.

Очевидно, раз голосеменные существовали в течение 350 миллионов лет и до сих пор еще очень многочисленны, их система размножения действует нормально. Но для того, чтобы она действовала, каждое голосеменное растение всегда должно производить большое количество семян и еще больше - пыльцы (пылевидных мужских половых клеток) для опыления. Размножение голосеменных зависит от ветра, разносящего их семена, но при этом многие семена попадают в неподходящие условия, - в воду, в пустыни, в места, слишком холодные для прорастания. Голосеменные растения затрачивают много энергии на производство семян и пыльцы, большая часть которых погибает. Впоследствии растения преодолели эту трудность, найдя более экономичный метод, но это произошло уже почти на 200 миллионов лет позднее, в меловой период.

Представьте себе условия, которые существовали в течение данного большого промежутка времени. На в позднекаменноугольное время преобладали обширные низменности с мягким . В обширных обильно произрастала пышная растительность; болотная вода покрывала отмершие части растений, предохраняла их от разложения и способствовала их сохранности вплоть до спрессования и превращения в уголь. Таким образом, в нашем представлении каменноугольная растительность - это главным образом богатая растительность влажных низменностей. Об обстановке, существовавшей в это время на холмистых возвышенностях, мы знаем мало, потому что более крутые склоны возвышенностей и отсутствие, как правило, на них стоячих вод не способствовали сохранности отмерших растений.

Фото 26. Реконструкция болота позднекаменноугольного времени с обычной для таких болот пышной растительностью. П - папоротники, X - хвощи, Ч - лепидодендроны - «чешуйчатые деревья», СП - семенные папоротники; видна также большая стрекоза. Некоторые хвощи достигали в высоту 30 м.

Болотистые низменности могли выглядеть так, как это изображено на фото 26, показывающем влажный лес. В таком лесу водилось много , подобных саламандрам, и насекомых. Такой тип болот, конечно, встречался не только в позднекаменноугольное время, он существовал и во все последующие эпохи. В настоящее время он часто встречается по берегам Мексиканского залива и вдоль Атлантического побережья Соединенных Штатов. Таковы в общих чертах современные болота, хотя, конечно, большая часть растений болот принадлежит теперь к совершенно другим видам, чем в каменноугольный период.

Фото 27. Огромные стволы триасовых хвойных деревьев, окаменевшие и превратившиеся в кварц. Национальный парк «Каменный лес», Аризона.

Мезозойская растительность. Следующая из наших реконструкций относится к триасовому периоду и характеризует район национального парка «Каменный лес» в восточной Аризоне. В действительности это совсем не лес. Это остатки леса, росшего в другом месте; они представляют собой скопление стволов деревьев, заключенных в толщу аргиллитов, из которой они сейчас постепенно высвобождаются в результате процессов выветривания (фото 27). За время долгого пребывания в толще породы стволы окаменели, их клеточная структура была замещена кремнеземом и превращена в агат - разновидность кварца. Стволы принадлежали хвойным деревьям (конечно, голосеменным), родственным современным соснам. При жизни деревья достигали 30-60 метров высоты, а стволы их имели толщину около двух метров. Мы знаем, что они росли не там, где находятся сейчас, потому что их поверхность носит следы истирания, а все ветви и корни обломаны. Это - плавник, принесенный в половодье откуда-то с возвышенностей в верховьях реки и погребенный в тонких аллювиальных отложениях. Он свидетельствует о том, что уже 220 миллионов лет назад на западе Северной Америки росли величественные рощи хвойных деревьев, точно такие же, как и те, которые значительно позже увидели европейцы, впервые проникшие на континент.

Фото 28. Реконструкция общего вида растительности, типичной для мезозойской эры (только голосеменные и бессеменные растения), 1. Растения, родственные цикадовым. 2. Растения, родственные хвощам. 3. Папоротники. 4. Хвойные. Другие мезозойские ландшафты показаны также на фото 40, 43, 44, 45, 47.

Фото 28 представляет собой реконструкцию растений, характерных для мезозойской эры. Среди них преобладают две группы голосеменных - хвойные и цикадовые, а также родственные им виды. Хвойные включали виды, подобные соснам и кипарисам, а также гинкго. Цикадовые, вероятно, развились из семенных папоротников. Их внешний облик напоминал пальмы, хотя эволюционной связи между этими группами нет; изящная крона из папоротниковидных листьев увенчивала ствол - короткий, шарообразный или бочонковидный, а иногда высокий. Некоторые цикадовые сохранились до наших дней. Бессеменные растения, в первую очередь папоротники и хвощи, в мезозойское время играли менее заметную роль по сравнению с этими голосеменными.

Среди профессиональных ученых и натуралистов-любителей, занимающихся коралловыми рифами, велись споры о самом термине "коралловый риф". Одни утверждали, что уже само его название подразумевает, что риф строят, главным образом, "коралловые" животные, но против этого особенно сильно возражали ботаники, отмечая, что тем самым не учитывается тот факт, что в процесс рифообразования не менее важный вклад вносят и растения. Конечно, верно, что кораллы вырабатывают огромное количество известняка, справедливо также и то, что превращению его в риф способствует ряд сложных физико-химических процессов, о которых мы поговорим позднее. Однако, несмотря на это, ботаник имеет полное право утверждать, что без растений не было бы и самих рифов.

У тех, кто лишь поверхностно знаком с рифами, такое утверждение может вызвать недоумение. В коралловых садах сразу замечаешь именно отсутствие растений, которые в первую очередь бросаются в глаза на суше и во многих других районах океана. Вместо зарослей огромных, мясистых бурых водорослей, которые растут в таком изобилии в более холодных водах, на рифе местами попадаются только отдельные кустики водорослей. Здесь встречаются лишь несколько нитчатых форм и зеленые водоросли Halimeda - свисающие с камней маленькие цепочки из твердых дисков. Попадаются также маленькие мясистые красные комки, в которых легко можно угадать водоросли; являются водорослями и красные пятна на скалах, хотя их и не столь легко распознать. Однако тот факт, что растения на рифе столь незаметны, отнюдь не означает, что их здесь почти нет. Они есть в рифовом биоценозе и играют в нем такую же важную роль, как и в других экосистемах. Дело в том, что большая часть имеющейся здесь растительной массы непосредственно не видна, так как фактически находится внутри тканей самой многочисленной группы рифовых животных - мадрепоровых кораллов, альционарий и их родственников. Другая ее часть также выглядит довольно необычно, что долгое время сбивало с толку биологов, пока они не прибегли к помощи микроскопа. Гладкие глыбы розового камня, которые вместе могут образовывать иногда массивные каменистые валы, оказались известковыми красными водорослями. Они, точно так же как мадрепоровые кораллы, имеют карбонатный скелет, который потом включается в состав рифового известняка, и поселяются там, где бывает самый сильный прибой. Вот почему та часть ученых, которая считает, что наиболее важной частью кораллового рифа являются его водоросли, имеет все основания отстаивать свою точку зрения.

Растения, обитающие на рифе, играют важную роль в двух отношениях. Во-первых, они служат источником энергии, преобразуя солнечную энергию в энергию химическую, которая является основой жизни на Земле. А во-вторых, поскольку речь идет о коралловом рифе, построенном из известняка, нетрудно догадаться, что растения вносят весомый вклад в процесс отложения карбоната кальция.

Источник энергии рифа

Самой важной из всех видов водорослей, встречающихся на рифе в несметных количествах, является одноклеточная водоросль, которая обитает внутри тканей очень многих животных. Это вид динофлагеллят Gymnodinium microadriaticum * , находящийся на вегетативной стадии. Независимо от партнера по симбиозу ** - будь то мадрепоровый коралл, альционария или горгонария, - эти динофлагелляты в тропических морях всегда относятся к одному и тому же виду. Поскольку они могут существовать только в симбиотической связи с животными, их называют зооксантеллами *** .

* (В настоящее время этот вид выделен в самостоятельный род Symbiodinium. )

*** (От греческого "zoon" - животное и "ksanthos" - желтый. - Прим. перев. )

Зооксантеллы находятся во внутреннем слое ткани кораллового полипа - эндодерме, и как полип, так и клетки водорослей извлекают выгоду из этого удивительного сожительства. В настоящее время ученые внимательно изучают все аспекты этого симбиоза.

Из всех существующих в мире видов кораллов около половины находятся в симбиотических отношениях с динофлагеллятами. Однако эта половина состоит именно из тех кораллов, которых мы видим на рифе. Они покрывают риф и строят его, тогда как кораллы, не имеющие этих водорослей, живут на больших глубинах. Различия биологических особенностей этих двух групп обусловлены именно наличием или отсутствием зооксантелл. Группа кораллов, в эндодерме которых обитают зооксантеллы, должна жить в хорошо освещенной воде с тем, чтобы водоросли могли осуществлять фотосинтез. Это обстоятельство ограничивает зону обитания таких кораллов - в большинстве случаев глубинами примерно до 40 метров, хотя некоторые из них могут встречаться и на глубине 100 метров. Кораллы, не имеющие симбионтов, не зависят от степени освещенности - они могут жить и в полной темноте.

В свою очередь, кораллы, живущие в симбиозе с водорослями, приобрели важные отличительные свойства. Во-первых, благодаря наличию плененных ими водорослевых клеток кораллы несравненно лучше обеспечены пищей. Во-вторых, такие кораллы могут значительно быстрее наращивать существенно больший скелет. Тот факт, что кораллы, имеющие в эндодерме зооксантеллы, значительно лучше обеспечены пищей, имеет важное значение не только для самих кораллов, но и для жизни рифа в целом, поскольку их усиленный рост важен для процесса рифообразования.

Количество зооксантелл в коралловых полипах столь велико, что, по приблизительным оценкам, в некоторых случаях их масса составляет такую же долю общей живой ткани коралла, как и масса ткани самих полипов. Поэтому, когда вы смотрите на риф, обильно покрытый мадрепоровыми кораллами и альционариями, значительную часть живой материи, которую вы видите, составляют растительные организмы. В некотором смысле вы видите перед собой поле плененных одноклеточных водорослей.

Таким образом, зооксантеллы являются одной из главных растительных основ жизни на рифе. Клетки водорослей имеют коричневатый цвет, просвечивающий почти повсюду через прозрачные ткани колонии; этот коричневатый оттенок исчезает только тогда, когда полип мадрепорового коралла или альционарии имеет свой собственный сильно выраженный пигмент. Известно, что вся животная жизнь основана на растительной. Основная часть биомассы донных животных на рифе приходится на прикрепленных кишечнополостных - мадрепоровые кораллы, альционарии, горгонарии и родственные им формы. Растения, за счет которых они существуют, обитают внутри их собственных тел.

Еще не до конца изучен вопрос, каким именно образом каждая сторона в этом партнерстве извлекает пользу из присутствия другой, хотя некоторые его аспекты представляются уже достаточно ясными. Водоросль, почти несомненно, извлекает выгоду из наличия подходящей для нее стабильной окружающей среды. Она поглощает эскреты полипа, то есть отходы его обмена веществ, используя их в своем собственном метаболизме. Например, двуокись углерода, выделяющаяся при дыхании коралла, нужна водоросли для фотосинтеза. В свою очередь, в результате фотосинтеза выделяется кислород, который нужен полипу. Другим продуктом фотосинтеза водорослей являются углеводы - коралловый полип нуждается и в них. В этот тесный взаимный обмен, который образует биохимический круговорот в системе водоросли - полипы, действующий с весьма высокой эффективностью и минимальными потерями для обоих партнеров, включаются также и многие другие вещества. Коралловый полип никогда не питается самими клетками водорослей; он только использует избытки производимой ими органики. Но если водоросли размножаются слишком быстро, полип имеет возможность избавиться от них полностью или частично, извергнув водоросли через рот вместе со слизью. Действительно, есть данные, свидетельствующие о том, что полип может весьма четко регулировать плотность водорослевых клеток в своей ткани. Некоторые полипы так точно снижают численность водорослей, что они образуют слой толщиной лишь в две клетки - похоже, такой слой является оптимальным для коралла.

У некоторых видов мадрепоровых кораллов, особенно у пластинчатых и листовидных форм, колонию образуют немногочисленные мелкие полипы, сидящие на значительном расстоянии друг от друга. Их соединяет между собой тонкий, но весьма внушительный по площади слой ткани самой колонии. В этой ткани также содержатся зооксантеллы. Все виды кораллов, в эндодерме которых имеются зооксантеллы, обеспечивают значительную, если не большую часть своих потребностей за счет процесса фотосинтеза, происходящего в клетках водорослей. Отсюда ясно, что связь коралл - водоросли очень выгодна для коралла. Однако мадрепоровые кораллы имеют и другой источник пищи, помимо водорослей, - многие из них еще и ловят зоопланктон - возможно, мадрепоровые кораллы испытывают недостаток в веществах, которых им не могут дать водоросли. Вероятно, каждый конкретный вид мадрепоровых кораллов отличается от других видов тем, что ему надо и что он получает от каждого из этих двух источников пищи. Одни виды ловят много зоопланктона и мало нуждаются в водорослях, тогда как другие используют главным образом продукты жизнедеятельности водорослей и ловят мало планктона. По-видимому, сотни видов мадрепоровых кораллов делят между собой имеющиеся ресурсы так, что никто не остается внакладе. Более того, вероятно, точно так же и альционарии делят с мадрепоровыми кораллами солнечную энергию, поступающую на риф.


Этот пучок зеленых водорослей имеет свой собственный обызвествленный "стебель", укрепляющийся в песке. Поэтому эти водоросли, которые относятся к сравнительно небольшому числу крупных растений, встречающихся на рифе, произрастают чаще на песке, чем на твердом грунте. Это водоросль из рода Pennicillus; она растет как на рифах Индо-Пацифики, так и в Карибском море, где и сделан этот снимок


Там, где растут мясистые водоросли, часто можно найти "сторожа" этих зеленых "угодий" - помацентровую рыбку Abudefduf. Она набрасывается на каждого, кто вторгается в пределы невидимых границ ее территории, заставляя растительноядных рыб убираться восвояси, почему водоросли и разрастаются на таком участке. На снимке помацентровая рыбка пытается укусить аквалангиста за палец

Водоросли не только снабжают кораллы пищей. Благодаря каким-то сложным биохимическим процессам, которые тоже изучены еще не до конца, зооксантеллы обеспечивают мадрепоровым кораллам возможность гораздо интенсивнее откладывать скелет, чем это делают кораллы, не имеющие такой симбиотической связи. Идет ли это на пользу самим водорослям, неизвестно - этот процесс может быть побочным или даже случайным следствием их присутствия. Сейчас ясно лишь одно: без симбиотических водорослей усиленное выделение известняка мадрепоровыми кораллами, что совершенно необходимо для роста рифа, было бы невозможным. Можно сказать, что известняк обязан своим образованием в равной степени и зооксантеллам, и полипам мадрепоровых кораллов. Кораллы, содержащие водоросли, называются рифостроящими, или герматипными. Их более глубоководных сородичей, в эндодерме которых нет клеток водорослей, обычно не относят к категории рифостроителей - они называются агерматипными. Некоторые агерматипные виды часто встречаются на коралловых рифах, особенно на глубоководных участках. Но в целом без водорослей кораллы не способны участвовать в процессе рифообразования.


Два вида растений, отлагающих карбонат кальция. Слева - зеленая водоросль Halimeda, справа - розовый камень, так обычно выглядят известковые красные водоросли из родов Porolithon и Lithothamnion. Только тонкий слой на поверхности "камня" является живой тканью, которая непрерывно откладывает под собой известняк примерно таким же образом, как и мадрепоровые кораллы. Отдельные растения могут выглядеть как очень крупные глыбы

Таким образом, большую часть растений на коралловом рифе нельзя увидеть при беглом осмотре. Эти растения имеют микроскопические размеры, но их общее количество неимоверно велико. Весь коралловый сад покрыт растительной пленкой, и на каждый квадратный сантиметр поверхности колонии мадрепоровых кораллов приходится в среднем полтора миллиона этих крошечных клеток, а на каждом квадратном метре неровной поверхности рифа их может быть и сотни миллиардов. Каждая новая растущая колония рифообразующих кораллов с самого начала содержит в себе эти водоросли, благодаря тому что их клетки переходят от родителей к потомкам через личинки. Вот почему риф обладает огромной растительной массой, которая служит основой существования животных.

Цвет водорослей

Большая часть биомассы растительных организмов на рифе приходится на долю симбиотических динофлагеллят, о которых мы только что говорили, остальная же ее часть состоит из многих сотен других, свободноживущих видов. При внимательном изучении обнаруживаешь, что водоросли на рифе имеют различные цвета, причем цвет водоросли зависит от того, к какой основной систематической группе она принадлежит. По своей природе водоросли являются довольно примитивными растениями, относящимися к нескольким типам. Самые крупные водоросли в мире окрашены в бурый цвет, они распространены в более холодных морях, а в тропиках бурые водоросли сравнительно редки и невелики по размерам. К другому типу относятся зеленые водоросли. Они довольно часто встречаются на рифах и выглядят совершенно по-разному - то как низкие кустики, то как тонкие нити. Однако самая крупная группа на рифах - тип красных водорослей, отличающихся широким разнообразием внешнего вида и форм. Некоторые из них имеют нежную студенистообразную консистенцию, тогда как другие откладывают известняк так же, как мадрепоровые кораллы.

Почти все водоросли, которые мы видим на поверхности рифа, относятся к многочисленным видам этих типов - то есть к зеленым, красным и бурым. Кроме них, имеются тут и другие типы - мы уже вели разговор о крошечных синезеленых водорослях, которые играют важную роль в фиксации атмосферного азота; есть и другие совсем незаметные типы водорослей. Представители некоторых из них имеют микроскопические размеры и встречаются в планктоне. Каждый из этих типов имеет весьма важное значение, но в количественном отношении они составляют меньшую часть растительной жизни рифа.

Окраска водорослей зависит от различных пигментов, содержащихся в их клетках. Пигменты играют основную роль в улавливании энергии солнечного света, которая далее используется в процессе фотосинтеза, происходящего в растении. Одни пигменты позволяют растению функционировать при низком уровне освещенности, другие приспособлены действовать только в определенном диапазоне длины световых волн. Поскольку интенсивность света и его спектральный состав меняются в зависимости от толщины водного слоя, через который он должен пройти, то, чем разнообразнее набор пигментов у растения, тем шире область его распространения. В результате некоторые растения могут жить на рифе, иногда в довольно значительном количестве, на глубинах, превышающих 60 или даже 100 метров. Особенно хорошо выживают на этих глубинах красные водоросли.

И все же, хотя приглядевшись, мы можем увидеть на коралловом рифе большое видовое разнообразие водорослей, общее количество растительности не так уж велико - рифу явно недостает тех густых зарослей, которые мы встречаем в более холодных водах. С другой стороны, среди донных форм животных имеется много растительноядных, а над ними пасется масса рыб, существование которых тоже зависит от водорослей. Чем же они питаются? Оказывается, морские водоросли очень быстро растут, но столь же быстро поедаются растительноядными. Как только водоросль поднимается над субстратом, она тут же съедается.

В результате этого водоросли на рифе никогда не накапливаются в больших количествах. Наблюдения показывают, что на хорошо освещенных участках кораллового рифа на каждом квадратном метре за год может вырасти 1-5 килограммов водорослей. Однако вес существующих в любой конкретный момент времени водорослей едва ли превышает несколько граммов: рыба-попугай, рыба-хирург или морские ежи быстро "подстригают" их. Вообще большинство рыб в мире относится к плотоядным, то есть питается животной пищей. Но коралловые рыбы в этом отношении представляют исключение - среди них преобладают растительноядные виды. Это означает, что съедобные мясистые водоросли никогда не вырастают до больших размеров, хотя именно они производят наибольшую долю растительной пище на рифе.

Мы можем убедиться в том, как быстро растут эти съедобные водоросли, если оградим их от растительноядных потребителей. Проведем небольшой эксперимент, накрыв какой-нибудь участок рифа специальной маленькой клеткой. Едва мы это сделаем, как весь защищенный участок покроют пучки зеленых нитчатых и мясистых красных водорослей. Но и на самом рифе встречаются защитники водорослей, не дающие растительноядным приблизиться к ним. Когда вы в следующий раз увидите участок, покрытый водорослями, приглядитесь к нему как следует - может быть, вам удастся увидеть поблизости рыбку из семейства помацентровых или другую рыбу с сильно развитым чувством собственности на "свою", индивидуальную территорию. Она будет защищать свой участок от любых незваных гостей, в том числе и от вас. Маленькая помацентровая рыбка может иметь всего лишь несколько сантиметров в длину, но это не мешает ей обладать решимостью бульдога, который вцепляется в лодыжку любого чужака, осмелившегося вторгнуться на его территорию. Если вы сунете руку на участок, который защищает такая рыбка, будьте готовы к тому, что она атакует и вас. Эта маленькая рыбка отгоняет от своего участка растительноядных животных - вот почему водоросли растут нетронутыми в пределах надежно охраняемых ею владений.

Во многих районах широко распространены зеленые водоросли Halimeda. Это известковые водоросли, то есть водоросли, откладывающие карбонат кальция в своих тканях. Поскольку Halimeda в конечном счете является одним из источников песка на коралловых рифах, мы поговорим о ней подробнее в восьмой главе. Halimeda образует густые заросли на рифах. Дело в том, что большая часть веса этих водорослей приходится на несъедобный известковый скелет, который они выделяют, и большинство растительноядных их не ест. Есть и еще одна водоросль, которая тоже выделяет известковый чехол - это бурая веерообразная водоросль Раdina. Однако большинство известковых водорослей - красные, и именно этот тип растений образует самые интересные известковые сооружения.

Розовые камни

Один из моих друзей, который обладает обширными познаниями в области естественных наук, но по своей природной скромности называет себя просто ботаником, однажды сказал, что он считает коралловые колонии животных своего рода почетными растениями. Говоря так, он имел в виду, что они нуждаются в свете и зависят от живущих в симбиозе с ними растительных клеток. Таким образом, в этой шутке содержится доля правды. Эти растительные клетки в значительной степени определяют условия, в которых могут расти рифостроящие кораллы. От них же в значительной степени зависит и способность этих кишечнополостных выделять известковый скелет, и, следовательно, они же делают участие кораллов в постройке рифа особенно весомым. Однако в процессе образования известняка не менее важная роль принадлежит известковым красным водорослям, которые, подобно мадрепоровым кораллам, непосредственно участвуют в накоплении карбоната кальция. И поэтому другой мой товарищ, на этот раз геолог, назвал все эти организмы почетными породами.

Оба высказывания наглядно демонстрируют полную взаимозависимость животных, растений и созданного ими самими субстрата. Никто из них не способен создать коралловый риф самостоятельно, без участия остальных, однако известковым красным водорослям принадлежит особо важная роль.

Они более всего заметны на тех участках рифа, которые особенно подвержены действию прибоя то есть там, где рифовая платформа резко обрывается в глубину, переходя во внешний склон рифа. Именно здесь и проходит розовая гряда из округлых камней, прочно спаянных с рифовым массивом. Гряда эта образована и покрыта живыми известковыми красными водорослями. Эти растения совсем не соответствуют нашим представлениям о том, как должны выглядеть морские водоросли, - они в основном состоят из известняка, отложенного клетками растительной ткани. 95% их веса приходится на минеральный скелет, и только 5% - на живую органическую ткань, которая расположена на самой поверхности породы или вблизи нее, розовую же окраску ей придают ее собственные пигменты. Бесчисленные наросты переходят один в другой, образуя самые крупные желваки в местах наиболее благоприятных для роста. Эти водоросли относятся главным образом к роду Porolithon (Индо-Пацифика) и к роду Lithothamnion (Карибское море). Они процветают в таких местах, где бывает самый сильный прибой, и, похоже, чем сильнее волны, тем лучше они растут. Разросшиеся водоросли образуют широкую гряду, которая называется водорослевым гребнем, он простирается параллельно кромке рифа. Во время самого большого отлива водорослевый гребень может возвышаться примерно на полметра над уровнем моря, но он никогда не обсыхает по-настоящему, так как постоянно заливается огромными океанскими волнами или увлажняется пеной прибоя. На самых прибойных участках редко можно встретить колонии мадрепоровых кораллов, и только эти прочные, как цемент, растения созидают риф и защищают его здесь.

Мористый край водорослевого гребня имеет участки, выступающие на много метров вперед, - они образованы теми же самыми красными водорослями. Обычно такие участки имеют метра два в ширину и отделены от соседних гребней примерно двухметровыми же щелями. Эти гребни и щели получили название шпор и каналов. Образованные водорослями шпоры могут выдаваться в море на 75 метров, сужаясь книзу по мере увеличения глубины, пока не достигнут таких глубин, где движение воды становится слишком слабым для поддержания жизнедеятельности этих водорослей. Откатывающиеся назад волны стекают вдоль каналов, начисто смывая с их стенок все живые организмы и не давая возможности поселиться новым обитателям. (Те же термины "шпоры" и "каналы" могут употребляться и в тех случаях, когда речь идет о краях других рифов, обладающих сходным строением, которое, однако, не связано с наличием водорослей. Края гребня такого рифа имеют аналогичную конфигурацию, однако каналы просто прорезают коренную породу рифа. Очень похожий рельеф в этом случае создают откатывающиеся волны, разрушительная сила которых увеличивается благодаря взвешенному в виде песку.)

Как образуется этот рельеф, ясно не до конца, но зато хорошо известно, какую он играет важную роль. Если стоять на гребне во время отлива и смотреть в сторону моря вдоль канала, можно увидеть, как гаснет и становится менее разрушительной чудовищная энергия волн. Длина образованных водорослями шпор и расстояние между ними (каналы) таковы, что в обычных условиях фронт волны, откатывающейся по каналу назад в сторону моря, встречается с идущим ей навстречу гребнем следующей волны. Они сталкиваются где-то посередине в вихре брызг и пены, частично гася друг друга. Если бы этого не происходило, разрушительная сила волн была бы значительно больше: на каждый километр рифа приходился бы удар мощностью в миллионы киловатт; под таким напором, возможно, не устояли бы даже эти удивительно прочные известняковые водоросли.

Многие рифы вообще существуют в их современном виде именно благодаря этим водорослям. Конечно, рифы постоянно разрушаются морским прибоем, непрерывно сносят с них куски породы и штормовые волны, но водорослевый гребень и шпоры не так легко поддаются волнам.

На глубине нескольких метров красных водорослей становится значительно меньше, почти исчезают багрянки с массивным скелетом, зато становится заметно больше зеленых водорослей. Однако на еще больших глубинах снова в большом количестве появляются красные водоросли, но уже другие их виды; они образуют тонкие известковые корки красного цвета, самых разных размеров. Иногда их бывает трудно отличить от некоторых тонких красных губок, живущих бок о бок с ними, но растения часто имеют более тусклый цвет и иное строение. Они хорошо растут в самой нижней части рифа и могут обходиться лишь небольшим количеством света благодаря высокой эффективности фотосинтеза и общей небольшой потребности в энергии, обусловленной медленным ростом. Точно так же, как все растения, глубоководные красные водоросли, производя органику, способствуют увеличению первичной продукции на рифе; кроме того, образуя корку на поверхности осадков, накопившихся в углублениях рифового основания, они закрепляют их и в конечном итоге способствуют превращению этих осадков в твердую породу. Так что и эти водоросли тоже помогают рифу расти и поддерживать свое существование наперекор постоянной эрозии, причиной которой в нижней части рифа являются не волны, а главным образом сверлящие животные. Но еще глубже света уже не хватает даже для медленно растущих водорослей, и в конце концов растения совсем исчезают. Ниже этой границы, в сущности, уже нет сообщества кораллового рифа, которое мы видели выше или у поверхности, и животная жизнь здесь поддерживается прямо или косвенно питательными веществами, которые попадают сюда из более освещенных слоев воды, расположенных выше. Жизнь ниже освещенной зоны всегда значительно более скудна.

Зеленые луга

Растения, с которыми мы сталкиваемся под водой при погружениях на рифе, являются главным образом водорослями. Это примитивные растения, распространение которых ограничено в основном морскими или пресными водоемами, поскольку у них нет механизмов, предохраняющих их от высыхания. Некоторые водоросли встречаются, правда, на суше, но только во влажных местах. Большинство наземных растений являются высшими растениями, эволюционно относительно молодыми, то есть появившимися сравнительно недавно, если сравнивать время их существования с общим временем развития жизни на Земле. Наземные растения не только приобрели способность противостоять высыханию, но также развили разнообразные и более сложные приспособительные устройства для получения минеральных веществ и для размножения. Таковы цветковые растения - от низких трав до больших деревьев. Некоторые растения, напоминающие травы, встречаются сейчас и в морях.

Морские травы играют важную роль на некоторых коралловых рифах. На защищенных от волн участках можно найти отдельные поляны и даже целые луга этих трав. Один из видов морской травы в обиходе называется черепашьей травой, так как она входит в рацион черепах. Морские травы растут главным образом на мелководье, и чаще всего их можно встретить не на самих рифах, а по соседству с ними - на песчаных и илистых отмелях или же в бухтах. Однако там, где имеются подходящие условия и субстрат, они могут произрастать и на коралловых рифах - на обширных рифовых платформах или в узкой полосе мелководья между сушей и береговым рифом.

Эти растения вернулись жить в море после того, как их предки выработали такие приспособления, которые позволили им выйти из моря на сушу. * У них еще сохранились многие особенности, которые не встречаются у морских растений, - скажем, ставшие теперь мелкими и неброскими цветы, которые распускаются под водой, или корни, которые есть только у наземных растений.

* (Вторичноводность морских трав в значительной степени условна, скорее можно говорить просто о наземных предках морских трав. Ведь выход растений на сушу произошел задолго до появления цветковых, и последние сформировались прежде всего как наземные обитатели. Морские травы не вернулись в водную среду, а просто пришли в нее с суши. - Прим. ред. )

Корни были нужны для жизни на суше. У водорослей их нет, так как они могут поглощать воду и необходимые для их жизнедеятельности минеральные вещества всей своей поверхностью непосредственно из омывающей их морской воды. Более высокоразвитые наземные растения, лишенные преимущества обитания в столь благоприятной среде, вынуждены получать все необходимое через корни, которые одновременно прикрепляют растения к почве. Вот почему морские травы встречаются только при определенных условиях окружающей среды: им нужен рыхлый субстрат, на котором они могли бы закрепить свои корни; на твердом же субстрате, там, где живут водоросли, они расти не могут. Больше всего для морских трав подходят песчаные, илистые участки - такие участки чаще всего мелководны, почти всегда имеют ровное дно и располагаются там, где волны не слишком сильны. Морские травы хорошо разрастаются в таких местах, укрепляя илистое дно и создавая подходящие условия для существования сообщества животных - травы служат им одновременно и пищей, и укрытием. Такие "луга" играют заметную роль в жизни рифа, обеспечивая его растительной массой и создавая своеобразные питомники на дне моря.

Однако в Мировом океане лишь незначительная часть коралловых рифов имеет обширные луга морской травы. На большинстве из них основой животной жизни все же являются водоросли, так же как это было и на древних рифах еще до того, как морские травы появились в царстве растений. На сегодняшний день морские водоросли представлены на рифе самыми разными видами - от одноклеточных (как свободноживущих планктонных, так и живущих в симбиозе с кораллами) до строителей массивных гряд розовых камней.

Поэтому не удивительно, что когда речь идет об этих изобилующих живыми организмами постройках в залитых солнцем тропических морях, термин "водорослевый риф" является столь же правомерным, как "коралловый риф". Это особенно верно для рифов, вокруг которых постоянно бушуют волны.