Из каких веществ состоит бактериальная клетка. Оболочки бактериальной клетки. особенности структуры клеточной стенки бактерий

Главными отличиями прокариотической (бактериальной) клетки от эукариотической является: отсутствие оформленного ядра (т.е. ядерной мембраны), отсутствие внутриклеточных мембран,ядрышек, комплекса Гольджи, лизосом, митохондрий.

Основными структурами бактериальной клетки являются:

Нуклеоид – представляет собой наследственный (генетический) материал бактериальной клетки, представлен 1 молекулой ДНК, замкнутой в кольцо и суперспирализованной (скручена в рыхлый клубок). Длина ДНК около 1мм. Объем информации около 1000 генов (признаков). Нуклеоид не отделен от цитоплазмы мембраной.

Цитоплазма – коллоид, т.е. водный раствор белков, углеводов. Липидов, минеральных веществ, в котором находятся рибосомы, включения, плазмиды.

На рибосомах происходит биосинтез белка. Рибосомы прокариот отличаются от эукариотических более мелкими размерами (70 S).

Включения – запасные питательные вещества бактериальной клетки, а также скопления пигментов. К запасным питательным веществам относятся: гранулы волютина (неорганического полифосфата), гликоген, гранулеза, крахмал, капли жира, скопления пигмента, серы, кальция. Включения, как правило, образуется при выращивании бактерий на богатых питательных средах и исчезает при голодании.

Клеточная мембрана – ограничивает цитоплазму. Сосотоит из двойного слоя фосфолипидов и встроенных мембранных белков. КМ кроме барьерной и транспортной функций выполняют роль центра метаболической активности (в отличие от эукариотической клетки). Белки мембраны, ответственные за перенос необходимых веществ в клетку, называют пермеазами. На внутренней поверхности КМ находятся ферментные ансамбли, т.е.упорядоченные скопления молекул ферментов, ответственных за синтез энергоносителей – молекул АТФ. КМ может образовывать впячивания в цитоплазму, которые называют мезосомами.Существует два вида мезосом:

Септальные – образуют поперечные перегородки в процессе деления клетки.

Латеральные – служат для увеличения поверхности КМ и повышения скорости обменных процессов.


Нуклеоид, ЦП и КМ образуют протопласт.

Одним из отличительных свойств бактерий является очень высокое внутриклеточное осмотическое давление (от 5 до 20 атм), что является результатом интенсивного обмена веществ. Поэтому для защиты от осмотического шока бактериальная клетка окружена прочной клеточной стенкой.

По строению клеточной стенки все бактерии делятся на 2 группы: Имеющие однослойную клеточную стенку – Грам-положительные. Имеющие двухслойную клеточную стенку – Грам-отрицательные. Названия Грам+ и Грам- имеют свою предисторию. В 1884 датский микробиолог Ганс Христиан Грам разработал оригинальный метод окраски микробов, в результате которого одни бактерииокрашивались в синий цвет (грам+), а другие в красный (грам-). Химическая основа различной окраски бактерий по методу Грама была выяснена сравнительно недавно – около 35 лет назад. Оказалось, что Г- и Г+ бактерии имеют разное строение клеточной стенки. Строение клеточной стенки Г+ бактерий. Основу клеточной стенки Г+ бактерий составляют 2 полимера: пептидогликан и тейхоевые кислоты. Пептидогликан представляет собой линейный полимер, в котором чередуются остатки мурамовой кислоты и ацетилглюкозамина. С мурамовой кислоте ковалентно связан тетрапептид (белок). Нити пептидогликана связаны между собой через пептиды и образуют прочный каркас – основу клеточной стенки. Между нитями пептидогликана находится другой полимер – тейхоевые кислоты(глицерол ТК и рибитол ТК) - полимер полифосфатов. Тейхоевые кислоты выступают на поверхности клеточной стенки и являются главными АГ Г+ бактерий. Кроме этого, в состав клеточной стенки Г+ бактерий входит рибонуклеат Mg. Стенка Г- бактерий состоит из 2-х слоев: внутренний слой представлен моно- или бислоем пептидогликана (тонкий слой) . Наружный слой состоит из липополисахаридов, липопротеина, белков, фосфолипидов. ЛПС всех Г- бактерий обладают токсическими и порогенными свойствами и называются эндотоксинами.

При воздействии некоторых веществ, например пенициллина, нарушается синтез пептидогликанового слоя. При этом из Г+ бактерий образуется протопласт, а из Г- сферопласт (т.к. сохраняется наружный слой клеточной стенки).

При определенных условиях культивтрования клетки, лишенные клеточной стенки, сохраняют способность к росту и делению, и такие формы называют L- формами (по названи. Института Листера, где было открыто это явление). В некоторых случаях после устранения фактора, тормозящего синтез клеточной стенки L-формы могут превратиться в исходные формы.

Многие бактерии синтезируют слизистое вещество, состоящее из мукополисахаридов, которое откладывается с наружной стороны клеточной стенки, окружая бактериальную клетку слизистым чехлом. Это капсула. Функция капсулы – защита бактерий от фазоцитоза.

Поверхностные структуры бактериальной клетки.

Органы прикрепления к субстрату (адгезии) – пили (фимбрии) или реснички. Начинаются от мембраны клетки. Сосотоят из белка пилина. Число пилей может достигать 400 на 1 клетку.

Органы передачи наследственной информации – F-пили или sex-пили. F-пили образуются только в том случае, если клетка нечет плазмиду, т.к. белки F-пили кодирует ДНК плазмиды. Они представляют собой тонкую длинную трубочку, которая прикрепляется к другой бактериальной клетке. Через образовавшийся канал плазмида переходит в соседнюю бактериальную клетку.

Органы движения – жгутики – представляют собой спиральные нити. Их длина может превышать их диаметр в 10 и более раз. Жгутики состоят из белка флагеллина. Основание жгутика связано с клеточной мембраной посредством базального тельца. Базальное тельце состоит из системы колец, которые вращаясь передают вращательное движение жгутику. По расположению жгутиком бактерии делятся на моно-, лофо-, амфи-, перитрихи.

Структурными компонентами клетки являются оболочка бактерий, состоящая из клеточной стенки, цитоплазматической мембраны и иногда капсулы; цитоплазма; рибосомы; различные цитоплазматические включения; нуклеоид (ядро). Некоторые виды бактерий имеют, кроме того, споры, жгутики, реснички (пили, фимбрии) (рис. 2).

Клеточная стенка обязательное образование бактерий большинства видов. Ее строение зависит от вида и принадлежности
бактерий к группам, дифференцируемым при окраске по методу Грама. Масса клеточной стенки составляет около 20 % сухой массы всей клетки, толщина – от 15 до 80 нм.

Рис. 3. Схема строения бактериальной клетки

1 - капсула; 2 - клеточная стенка; 3 - цитоплазматическая мембрана; 4 - цитоплазма; 5 - мезосомы; 6 - рибосомы; 7 - нуклеоид; 8 - внутрицитоплазматические мембранные образования; 9 - жировые кап­ли; 10 - полисахаридные гранулы; 11 - гранулы по­лифосфата; 12 -- включения серы; 13 - жгутики; 14 - базальное тельце

Клеточная стенка имеет поры диаметром до 1 нм, поэтому она – полупроницаемая мембрана, через которую проникают питательные вещества и выделяются продукты обмена.

Эти вещества могут проникать внутрь микробной клетки лишь после предварительного гидролитического расщепления специфическими ферментами, выделяемыми бактериями во внешнюю среду.

Химический состав клеточной стенки неоднороден, но он является постоянным для определенного вида бактерий, что используется при идентификации. В составе клеточной стенки обнаружены азотистые соединения, липиды, целлюлоза, полисахариды, пектиновые вещества.

Наиболее важным химическим компонентом клеточной стенки является сложный полисахаридпептид. Его еще называют пептидогликан, гликопептид, муреин (от лат. murus – стенка).

Муреин представляет собой структурный полимер, состоящий из молекул гликана, образованных ацетилглюкозамином и ацетилмурамовой кислотой. Синтез его осуществляется в цитоплазме на уровне цитоплазматической мембраны.

Пептидогликан клеточной стенки различных видов имеет специфический аминокислотный состав и в зависимости от этого определенный хемотип, что учитывают при идентификации молочнокислых и других бактерий.

В клеточной стенке грамотрицательных бактерий пептидогликан представлен одним слоем, тогда как в стенке грамположительных бактерий он формирует несколько слоев.

В 1884 г. Gram предложил метод окраски ткани, который использовали для окрашивания клеток прокариот. Если при окраске по Граму фиксированные клетки обработать спиртовым раствором краски кристаллического фиолетового, а затем раствором йода, то эти вещества образуют с муреином устойчивый окрашенный комплекс.

У гоамположительных микроорганизмов окрашенный фиолетовый комплекс под воздействием этанола не растворяется и соответственно не обесцвечивается, при докрашивании фуксином (краска красного цвета) клетки остаются окрашенными в темно-фиолетовый цвет.

У грамотрицательных видов микроорганизмов генцианвиолет растворяется этанолом и вымывается водой, а при докрашивании фуксином клетка окрашивается в красный цвет.

Способность микроорганизмов окрашиваться аналиновыми красителями и по методу Грама называют тинкториальными свойствами . Их необходимо изучать в молодых (18-24 часовых) культурах, так как некоторые грамположительные бактерии в старых культурах теряют способность положительно окрашиваться по методу Грама.

Значение пептидогликана заключается в том, что благодаря ему клеточная стенка обладает ригидностью, т.е. упругостью, и является защитным каркасом бактериальной клетки.

При разрушении пептидогликана, например, под действием лизоцима клеточная стенка теряет ригидность и разрушается. Содержимое клетки (цитоплазма) вместе с цитоплазматической мембраной приобретает сферическую форму, т. е. становится протопластом (сферопластом).

С клеточной стенкой связаны многие как синтезирующие, так и разрушающие ферменты. Компоненты клеточной стенки синтезируются в цитоплазматической мембране, а затем транспортируются в клеточную стенку.

Цитоплазматическая мембрана располагается под клеточной стенкой и плотно прилегает к ее внутренней поверхности. Она представляет собой полупроницаемую оболочку, окружающую цитоплазму и внутреннее содержимое клетки -протопласт. Цитоплазматическая мембрана – это уплотненный наружный слой цитоплазмы.

Цитоплазматическая мембрана является главным барьером между цитоплазмой и окружающей средой, нарушение ее целостности приводит к гибели клетки. В ее состав входят белки (50-75 %), липиды (15-45 %), у многих видов – углеводы (1-19 %).

Главным липидным компонентом мембраны являются фосфо- и гликолипиды.

Цитоплазматическая мембрана при помощи локализованных в ней ферментов осуществляет разнообразные функции: синтезирует мембранные липиды – компоненты клеточной стенки; мембранные ферменты – избирательно переносят через мембрану различные органические и неорганические молекулы и ионы, мембрана участвует в превращениях клеточной энергии, а также в репликации хромосом, в переносе электрохимической энергии и электронов.

Таким образом, цитоплазматическая мембрана обеспечивает избирательное поступление в клетку и удаление из нее разнообразных веществ и ионов.

Производными цитоплазматической мембраны являются мезосомы . Это сферические структуры, образуемые при закручивании мембраны в завиток. Они располагаются с двух сторон – в месте образования клеточной перегородки или рядом с зоной локализации ядерной ДНК.

Мезосомы функционально эквивалентны митохондриям клеток высших организмов. Они участвуют в окислительно-восстановительных реакциях бактерий, играют важную роль в синтезе органических веществ, в формировании клеточной стенки.

Капсула является производным наружного слоя клеточной сгонки и представляет собой слизистую оболочку, окружающую одну или несколько микробных клеток. Толщина ее может достигать 10 мкм, что во много раз превышает толщину самой бактерии.

Капсула выполняет защитную функцию. Химический состав капсулы бактерий различен. В большинстве случаев она состоит из сложных полисахаридов, мукополисахаридов, иногда полипептидов.

Капсулообразование, как правило, является видовым признаком. Однако появление микрокапсулы часто зависит от условий культивирования бактерий.

Цитоплазма – сложная коллоидная система с содержанием большого количества воды (80-85 %), в которой диспергированы белки, углеводы, липиды, а также минеральные соединения и другие вещества.

Цитоплазма представляет собой содержимое клетки, окруженное цитоплазматической мембраной. Ее подразделяют на две функциональные части.

Одна часть цитоплазмы находится в состоянии золя (раствора), имеет гомогенную структуру и содержит набор растворимых рибонуклеиновых кислот, белков-ферментов и продуктов метаболизма.

Другая часть представлена рибосомами, включениями различной химической природы, генетическим аппаратом, другими внутрицитоплазма-тическими структурами.

Рибосомы – это субмикроскопические гранулы, представляющие собой нуклеопротеиновые частицы сферической формы диаметром от 10 до 20 нм, молекулярной массой около 2-4 млн.

Рибосомы прокариот состоят из 60 % РНК (рибонуклеиновой кислоты), располагающейся в центре, и 40 % белка, покрывающего нуклеиновую кислоту снаружи.

Включения цитоплазмы представляют собой продукты обмена, а также резервные продукты, за счет которых клетка живет в условиях недостатка питательных веществ.

Генетический материал прокариот состоит из двойной нити дезоксирибонуклеиновой кислоты (ДНК) компактной структуры, расположенной в центральной части цитоплазмы и не отделенной от нее мембраной. ДНК бактерий по строению не отличается от ДНК эукариот, но так как она не отделена от цитоплазмы мембраной, генетический материал называют нуклеоидом или генофором . Ядерные структуры имеют сферическую или подковообразную форму.

Споры бактерий являются покоящейся, не размножающейся их формой. Они формируются внутри клетки, представляют собой образования круглой или овальной формы. Споры образуют преимущественно грамположительные бактерии, палочковидной формы с аэробным и анаэробным типом дыхания в старых культурах, а также в неблагоприятных условиях внешней среды (недостаток питательных веществ и влаги, накопление продуктов обмена в среде, изменение рН и температуры культивирования, наличие или отсутствие кислорода воздуха и др.) могут переключаться на альтернативную программу развития, в результате чего образуются споры. При этом в клетке образуется одна спора. Это свидетельствует о том, что спорообразование у бактерий является приспособлением для сохранения вида (индивидуума) и не является способом их размножения. Процесс спорообразования происходит, как правило, во внешней среде в течение 18-24 ч.

Зрелая спора составляет примерно 0,1 объема материнской клетки. Споры у разных бактерий различаются по форме, размеру, расположению в клетке.

Микроорганизмы, у которых диаметр споры не превышает ширины вегетативной клетки, называют бациллами , бактерии, имеющие споры, диаметр которых больше поперечника клетки в 1,5-2 раза, называют клостридиями .

Внутри микробной клетки спора может располагаться в середине – центральное положение, на конце – терминальное и между центром и концом клетки – субтерминальное расположение.

Жгутики бактерий являются локомоторными органами (органами движения), при помощи которых бактерии могут передвигаться со скоростью до 50-60 мкм/с. При этом за 1 с бактерии перекрывают длину своего тела в 50-100 раз. Длина жгутиков превышает длину бактерий в 5-6 раз. Толщина жгутиков составляет в среднем 12-30 нм.

Число жгутиков, их размеры и расположение постоянны для определенных видов прокариот и поэтому учитываются при их идентификации.

В зависимости от количества и местонахождения жгутиков бактерии подразделяют на монотрихи (монополярные монотрихи) – клетки с одним жгутиком на одном из концов, лофотрихи (монополярные политрихи) – пучок жгутиков располагается на одном из концов, амфитрихи (биполярные политрихи) – жгутики располагаются на каждом из полюсов, перитрихи – жгутики расположены по всей поверхности клетки (рис. 4) и атрихи – бактерии, лишенные жгутиков.

Характер движения бактерий зависит от числа жгутиков, возраста, особенностей культуры, температуры, наличия различных химических веществ и других факторов. Наибольшей подвижностью обладают монотрихи.

Жгутики чаще имеются у палочковидных бактерий, они не являются жизненно необходимыми структурами клетки, так как существуют безжгутиковые варианты подвижных видов бактерий.

Бактериальная клетка состоит из клеточной стенки, цитоплазматической мембраны, цитоплазмы с включениями и ядра, называемого нуклеоидом (рис. 3.4). Имеются дополнительные структуры: капсула, микрокапсула, слизь, жгутики , пили. Некоторые бактерии в неблагоприятных условиях способны образовывать споры .

Рис. 3.4

Клеточная стенка . В клеточной стенке грамположительных бактерий содержится небольшое количество полисахаридов, липидов, белков. Основным компонентом толстой клеточной стенки этих бактерий является многослойный пептидогликан (муреин, мукопептид), составляющий 40-90 % массы клеточной стенки (рис. 3.5, 3.7). С пептидогликаном клеточной стенки грамположительных бактерий ковалентно связаны тейхоевые кислоты (от греч. teichos - стенка).


Рис. 3-5-


Рис. 3.6. Фазово-контрастная микроскопия L -форм

В состав клеточной стенки грамотрицательных бактерий входит наружная мембрана, связанная посредством липопротеина с подлежащим слоем пептидогликана. На ультратонких срезах бактерий наружная мембрана имеет вид волнообразной трехслойной структуры, сходной с внутренней мембраной, которую называют цитоплазматической (рис. 3.5,3.8). Основным компонентом этих мембран является бимолекулярный (двойной) слой липидов. Внутренний слой наружной мембраны представлен фосфолипидами, а в наружном слое расположен липополисахарид. Липополи- сахарид наружной мембраны состоит из 3 фрагментов: липида А - консервативной структуры, практически одинаковой у грамотрицательных бактерий; ядра, или стержневой, коровой части (от лат. core - ядро), относительно консервативной олигосахаридной структуры (наиболее постоянной частью ядра ЛПС является кетодезоксиоктоновая кислота); высоковариабельной О-специфической цепи полисахарида, образованной повторяющимися идентичными олигосахаридными последовательностями (0-антиген). Белки матрикса наружной мембраны пронизывают ее таким образом, что молекулы белка, называемые поринами, окаймляют гидрофильные поры, через которые проходят вода и мелкие гидрофильные молекулы.


Рис. 3-7 Электронограмма улыратонкого среза клетки листерий - Listeria monocytogenes (по А. А. Авакяну, Л. Н. Кац. И. Б. Павловой). Хорошо выражены цитоплазматическая мембрана, мезосома и нуклеоид в виде светлых зон с фибриллярными, нитевидными структурами ДНК; клеточная стенка - толстая, типичная для грамположительных бактерий


Рис. 3.8. Электронограмма ультратонкого среза клетки бруцелл (Brucella melitensis ). По А. А. Авакяну, Л. Н. Кац, И. Б. Павловой.

Нуклеоид имеет вид светлых зон с фибриллярными, нитевидными структурами ДНК; клеточная стенка - тонкая, типичная для грамотрицательных бактерий

Между наружной и цитоплазматической мембранами находится периплазматическое пространство, или периплазма, содержащая ферменты (протеазы, липазы, фосфатазы, нук- леазы, бета-лактамазы) и компоненты транспортных систем.
При нарушении синтеза клеточной стенки бактерий под влиянием лизоцима, пенициллина, защитных факторов организма образуются клетки с измененной (часто шаровидной) формой: протопласты - бактерии, полностью лишенные клеточной стенки; сферопласты - бактерии с частично сохранившейся клеточной стенкой. Бактерии сферо- или протопластного типа, утратившие способность к синтезу пептидогликана под влиянием антибиотиков или других факторов и способные размножаться, называются L-фор- мами (рис. З.б). Некоторые L-формы (нестабильные) при удалении фактора, приведшего к изменениям бактерий, могут реверсировать, «возвращаясь» в исходную бактериальную клетку.

Цитоплазматическая мембрана при электронной микроскопии ультратонких срезов представляет собой трехслойную мембрану (2 темных слоя толщиной по 2,5 нм разделены светлым - промежуточным). По структуре она похожа на плазмалемму клеток животных и состоит из двойного слоя фосфолипидов с внедренными поверхностными, а также интегральными белками, как бы пронизывающими насквозь структуру мембраны. При избыточном росте (по сравнению с ростом клеточной стенки) цитоплазматическая мембрана образует инвагинаты - впячивания в виде сложно закрученных мембранных структур, называемые мезосомами (рис. 3.7). Менее сложно закрученные структуры называются внутрицитоплазматическими мембранами.
Цитоплазма состоит из растворимых белков, рибонуклеиновых кислот, включений и многочисленных мелких гранул - рибосом, ответственных за синтез (трансляцию) белков. Рибосомы бактерий имеют размер около 20 нм и коэффициент седиментации 70S, в отличие от ЭОБ-рибосом, характерных для эукариотических клеток. Рибосомные РНК (рРНК) - консервативные элементы бактерий («молекулярные часы» эволюции). 16S рРНК входит в состав малой субъединицы рибосом, а 23S рРНК - в состав большой субъединицы рибосом. Изучение 16S рРНК является основой геносистематики, позволяя оценить степень родства организмов. В цитоплазме имеются различные включения в виде гранул гликогена, полисахаридов, бета-оксимасляной кислоты и полифосфатов (волютин). Они являются запасными веществами для питания и энергетических потребностей бактерий. Волютин обладает сродством к основным красителям и легко выявляется с помощью специальных методов окраски (например, по Нейссеру) в виде мета- хроматических гранул. Характерное расположение гранул во лютина выявляется у дифтерийной палочки в виде интенсивно прокрашивающихся полюсов клетки (рис 3.87).

Рис. 3-9 а

Рис. 3-9 б. Мазок из чистой культуры Klebsiella pneumoniae , окраска по Бурри-Гипсу. Видны капсулы - светлые ореолы вокруг палочковидных бактерий


Рис. 3.10. Жгутики и пили кишечной палочки. Электронограмма бактерии, напыленной платинопалладиевым сплавом. Препарат В. С. Тюрина

Нуклеоид - эквивалент ядра у бактерий. Он расположен в центральной зоне бактерий в виде двунитевой ДНК, замкнутой в кольцо и плотно уложенной наподобие клубка (рис. 3.4, 3.7 и 3.8). Ядро бактерий, в отличие от эукариот, не имеет ядерной оболочки, ядрышка и основных белков (гистонов). Обычно в
бактериальной клетке содержится одна хромосома, представленная замкнутой в кольцо молекулой ДНК. Кроме нуклеоида, представленного одной хромосомой, в бактериальной клетке имеются внехромосомные факторы наследственности в виде ковалентно замкнутых колец ДНК - так называемые плазмиды (см. рис. 3.4).

Капсула, микрокапсула, слизь. Капсула - слизистая структура толщиной более 0,2 мкм, прочно связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние границы. Капсула различима в мазках-отпечатках из патологического материала (см. рис. 3.9а). В чистых культурах бактерий капсула образуется реже. Она выявляется при специальных методах окраски мазка (например, по Бурри-Гинсу), создающих негативное контрастирование веществ капсулы: тушь образует темный фон вокруг капсулы (см. рис. 3.9б).
Капсула состоит из полисахаридов (экзополисахаридов), иногда - из полипептидов; например, у сибиреязвенной бациллы она состоит из полимеров D-глутаминовой кислоты. Капсула гидрофильна, препятствует фагоцитозу бактерий. Капсула антигенна: антитела против капсулы вызывают ее увеличение (реакция набухания капсулы).

Многие бактерии образуют микрокапсулу - слизистое образование толщиной менее 0,2 мкм, выявляемое лишь при электронной микроскопии. От капсулы следует отличать слизь - мукоидные экзополисахариды, не имеющие четких границ. Слизь растворима в воде. Бактериальные экзополисахариды участвуют в адгезии (прилипании к субстратам), их еще называют гликокаликсом. Кроме синтеза экзополисахаридов бактериями, существует и другой механизм их образования: путем действия внеклеточных ферментов бактерий на дисахариды. В результате этого образуются декстраны и леваны.

Жгутики бактерий определяют подвижность бактериальной клетки. Жгутики представляют собой тонкие нити, берущие начало от цитоплазматической мембраны, имеют большую длину, чем сама клетка (рис. 3.10). Толщина жгутиков 12-20 нм, длина 3-15 мкм. Они состоят из 3 частей: спиралевидной нити, крюка и базального тельца, содержащего стержень со специальными дисками (1 пара дисков - у грамположительных и 2 пары дисков - у грамотрицательных бактерий). Дисками жгутики прикреплены к цитоплазматической мембране и клеточной стенке. При этом создается эффект электромотора со стержнем-мотором, вращающим жгутик. Жгутики состоят из белка - флагеллина (отflagellum - жгутик), являющегося Н-антигеном. Субъединицы флагеллина закручены в виде спирали. Число жгутиков у бактерий различных видов варьирует от одного (монотрих) у холерного вибриона до десятка и сотен жгутиков, отходящих по периметру бактерии (перитрих) у кишечной палочки, протея и др.


Рис. 3.11. Электронограмма ультратонкого среза столбнячной палочки (Clostridium tetani ) в вегетативной клетке бактерии формируется терминальная спора с многослойной оболочкой. (По А. А. Авакяну, Л. Н. Кац, И. Б. Павловой)

Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.

Пили (фимбрии, ворсинки) - нитевидные образования, более тонкие и короткие (3-10 нм х 0,3-10 мкм), чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина, обладающего антигенной активностью. Различают пили, ответственные за адгезию, т. е. за прикрепление бактерий к поражаемой клетке, а также пили, ответственные за питание, водно-солевой обмен и половые (F-пили), или конъюгационные, пили. Пили многочисленны - несколько сотен на клетку.

Однако половых пилей обычно бывает 1-3 на клетку: они образуются так называемыми «мужскими» клетками-донорами, содержащими трансмиссивные плазмиды (F-, R-, Col- плазмиды). Отличительной особенностью половых пилей является взаимодействие с особыми «мужскими» сферическими бактериофагами, которые интенсивно адсорбируются на половых пилях (рис. 3.10).

Споры - своебразная форма покоящихся фирмикутных бактерий, т.е. бактерий с грамположительным типом строения клеточной стенки. Споры образуются при неблагоприятных условиях существования бактерий (высушивание, дефицит питательных веществ и др.). Внутри бактериальной клетки образуется одна спора (эндоспора). Образование спор способствует сохранению вида и не является способом размножения, как у грибов. Спорообразующие бактерии рода Bacillus имеют споры, не превышающие диаметр клетки. Бактерии, у которых размер споры превышает диаметр клетки, называются клостридиями, например, бактерии рода Clostridium (лат. Clostridium - веретено). Споры кислотоустойчивы, поэтому окрашиваются по методу Ауески или по методу Циля-Нильсена в красный, а вегетативная клетка - в синий цвет (см. рис. 3.2, бациллы, клостридии).
Форма спор может быть овальной, шаровидной; расположение в клетке - терминальное, т. е. на конце палочки (у возбудителя столбняка), субтерминальное - ближе к концу палочки (у возбудителей ботулизма, газовой гангрены) и центральное (у сибиреязвенной бациллы). Спора долго сохраняется из-за наличия многослойной оболочки (рис. 3.11), дипиколината кальция, низкого содержания воды и вялых процессов метаболизма. В благоприятных условиях споры прорастают, проходя 3 последовательные стадии: активация, инициация, прорастание.

Несмотря на внешнюю простоту, бактерии являются сложными организмами. Клетки бактерий состоят из протопласта и оболочки.

Основными структурными бактериальной клетки являются: клеточная стенка, цитоплазматическая мембрана, цитоплазма с включениями и ядро, называемое нуклеоидом. Бактерии могут иметь и дополнительные структуры: капсулу, микрокапсулу, слизь, жгутики. Многие бактерии способны образовывать споры.

Клеточная стенка - прочная, упругая структура, придающая бактерии определенную форму и сдерживающая высокое осмотическое давление в стенке. Она участвует в процессе деления клетки и транспорте метаболитов. В клеточной стенке бактерий содержится небольшое количество полисахаридов, липидов и белков. Клеточная стенка бактерий выполняет ряд функций: она является наружным барьером клетки, устанавливающим контакт микроорганизма со средой; обладая высокой степенью прочности, выдерживает внутреннее давление протопласта в гипотоническом растворе.

Цитоплазматическая мембрана является трехслойной структурой и окружает наружную часть цитоплазмы бактерий. Она является обязательным полифункциональным структурным элементом клетки. Цитоплазматическая мембрана составляет 8 - 15 % сухой массы клетки. Она участвует в регуляции осмотического давления, транспорте веществ и энергетическом метаболизме клетки (за счет ферментов цепи переноса электронов, АТФ-аза и др.). На мембране локализованы окислительные ферменты и ферменты транспорта электронов. Химический состав цитоплазматической мембраны представлен белково-липидным комплексом, в котором на долю белков приходится 50 - 70 %, липидов - 15 - 50 %. В цитоплазматической мембране некоторых бактерий обнаружено незначительное количество углеводов. Главным липидным компонентом мембраны являются фосфолипиды. Белковая фракция цитоплазматической мембраны представлена структурными белками, обладающими ферментативной активностью.

К строению цитоплазматической мембраны бактерий относится жидкостно-мозаичная модель мембран. По этой модели мембрана образована текучим биослоем липидов, в который включены ассиметрично расположенные белковые молекулы.

Цитоплазма бактерий занимает основной объем клетки и состоит из растворимых белков. Цитоплазма представлена структурными элементами: рибосомами, включениями и нуклеоидом. Рибосомы прокариот имеют константу седиментации 70S. Диаметр рибосом составляет 15 - 20 нм. Число рибосом в бактериальной клетке может быть разным. Так, в быстрорастущей клетке Escherichia coli насчитывается около 15 000 рибосом. Процесса биосинтеза белка в клетке осуществляется полисомами. Иногда в полисоме насчитывается несколько десятков рибосом.

Нуклеоид (образование, подобное ядру) - эквивалент ядра у бактерий. Нуклеоид расположен в центральной зоне бактерий в виде двунитчатой ДНК, замкнутой в кольцо и плотно уложенной наподобие клубка. В отличие от эукариот ядро бактерий не имеет ядерной оболочки, ядрышка и основных белков. Часто в бактериальной клетке содержится одна хромосома, представленная замкнутой в кольцо молекулой ДНК. Нуклеоид выявляется в световом микроскопе после окраски ДНК методами по Фельгену или Гимзе.

Некоторые бактерии (пневмококки и др.) образуют капсулу - слизистое образование, прочно связанное с клеточной стенкой, имеющее четко очерченные внешние границы. В чистых культурах бактерий капсула образуется реже. Выявляется при специальных методах окраски, создающих негативное контрастирование вещества капсулы. Капсула состоит из полисахаридов, иногда полипептидов. Капсула гидрофильна, препятствует фагоцитозу бактерий. Многие бактерии образуют микрокапсулу - слизистое образование, выявляемое при электронной микроскопии.

Основная функция капсулы - защитная. Она предохраняет клетку от действия различного рода неблагоприятных факторов внешней среды. У многих бактерий капсула снаружи покрыта слизью. У почвенных микроорганизмов в условиях жаркого засушливого климата слизистый слой предохраняет клетку от высыхания.

В протопласте различают цитоплазму, ядроподобные образования и различные включения.

Цитоплазма (протоплазма) имеет очень сложный, изменяющийся химический состав. Основными химическими соединениями цитоплазмы являются белки, нуклеиновые кислоты, липиды; содержится большое количество воды. микробиологический прокариот бактериальный клетка

Прилегающий к оболочке тонкий поверхностный слой цитоплазмы, более плотный, чем остальная ее масса, называется цитоплазматической мембраной (рис. 2). Она обладает полупроницаемостью и выполняет важную роль в обмене веществ между клеткой и окружающей средой. Цитоплазматическая мембрана состоит из трех слоев: одного липидного и двух, примыкающих к нему с обеих сторон, белковых. Она содержит 60 --65% белка и 35 -- 40% липидов; в ней локализованы многие ферменты.

Современные методы исследований с помощью электронного микроскопа показали, что цитоплазма негомогенна. Помимо бесструктурной полужидкой, вязкой массы, находящейся в коллоидном состоянии, она местами пронизана мембранами; в ней находятся различные по форме и величине микроскопические структурно оформленные частички. Это рассеянные в цитоплазме в виде мелких зернышек богатые рибонуклеиновой кислотой (РНК) рибосомы. Они состоят примерно на 60% из РНК и на 40% из белка. В одной бактериальной клетке содержатся тысячи и десятки тысяч рибосом; в них осуществляется синтез белков клетки.

Кроме рибосом обнаружены особые, различной формы мембранные (пластинчатые) структуры, называемые мезосомами. Они образуются путем ответвления и впячивания в полость клетки цитоплазматической мембраны. В мезосомах происходят процессы окисления органических веществ, являющихся источником энергии; здесь синтезируются вещества с большим запасом энергии, например аденозинтрифосфорная кислота (АТФ). Мезосомы бактерий, таким образом, являются аналогами митохондрий других организмов (дрожжей, растений, животных).

Помимо этих образований, где протекают важнейшие процессы обмена веществ клетки, в цитоплазме также содержатся разнообразные включения, являющиеся запасными питательными веществами: крупинки гликогена (крахмалоподобного вещества), капли жира, гранулы волютина (метахроматин), состоящие преимущественно из полифосфатов и др. В клетках некоторых бактерий находятся красящие вещества -- пигменты.

Ядро, морфологически оформленное и типичное для клеток других организмов (эукариотов), у бактерий отсутствует.

Современные методы исследований позволили выявить в клетках истинных бактерий сходные с ядром образования, которые называют нуклеоидами. Однако сконцентрированное в определенных местах клетки (чаще в центре) ядерное вещество не отграничено от цитоплазмы мембраной и форма этих ядроподобных структур непостоянна.

Бактерии и близкие к ним организмы (спирохеты, микоплазмы, актиномицеты) как не имеющие истинного ядра называют прокариотами (доядерными организмами).

Оболочка клеток бактерий, которую нередко называют клеточной стенкой, плотная, обладает известной упругостью и эластичностью. Она обусловливает относительное постоянство формы клетки, служит защитой от неблагоприятных внешних воздействий и участвует в обмене веществ клетки. Оболочка проницаема для воды и низкомолекулярных веществ. В электронном микроскопе она легко отличима от цитоплазмы, имеет слоистое строение.

Химический состав оболочки довольно сложный и неоднородный у разных бактерий; опорным ее каркасом является сложный полисахарид-пептид, называемый муреином (от лат. murus -- стенка). Кроме муреина имеются и другие компоненты: липиды, полипептиды, полисахариды, тейховые кислоты, аминокислоты, в частности диаминопимелиновая, которая отсутствует у других организмов. Соотношение этих веществ в оболочках клеток разных бактерий значительно варьирует.

Различие в химическом составе клеточных оболочек бактерий сказывается на их способности окрашиваться по методу Грама. По этому признаку различают бактерии грамположительные (окрашивающиеся) и грамотрицательные (не окрашивающиеся). В оболочках грамположительных бактерий содержится больше полисахаридов, муреина и тейховых кислот. Оболочки грамотрицательных бактерий имеют многослойную структуру, в них высокое содержание липидов в виде липопротеидов и липополисахаридов.

Оболочка у некоторых бактерий может ослизняться. Слизистый слой, окружающий оболочку, бывает очень тонким и приближается к пределу видимости под обычным световым микроскопом. Он может достигнуть и значительной толщины, образуя так называемую капсулу. Нередко размер капсулы намного превышает величину бактериальной клетки. Ослизнение оболочек иногда бывает настолько сильным, что капсулы отдельных клеток сливаются в слизистые массы, в которые вкраплены бактериальные клетки (зооглеи). Продуцируемые некоторыми бактериями слизистые вещества не удерживаются в виде компактной массы вокруг клеточной оболочки, а диффундируют в окружающую среду.

Химический состав слизей различен у отдельных видов, но может быть и одинаковым. Большое значение имеет состав питательной среды, на которой развиваются бактерии. В составе бактериальных слизей обнаружены различные полисахариды (декстраны, глюканы, леваны), а также азотсодержащие вещества (типа полипептидов, протеин-полисахариды и др.).

Интенсивность слизеобразования в значительной мере зависит от условий внешней среды. У многих бактерий слизеобразование стимулируется, например, культивированием при низких температурах. Слизеобразующие бактерии при быстром размножении в жидких субстратах могут превратить их в сплошную слизистую массу. Подобное явление, причиняющее значительные убытки, наблюдается иногда при производстве сахара в сахаристых экстрактах из свеклы. Возбудителем этого порока является бактерия лейконосток (Leuconostoc mesenteroides). За короткое время сахарный сироп может превратиться в тягучую слизистую массу. Ослизнению подвергаются мясо, колбасы, творог; тягучими могут быть молоко, рассолы квашеных овощей, пиво, вино.

Бактерии - одни из самых древних организмов на Земле. Несмотря на простоту своего строения, они живут во всех возможных средах обитания. Больше всего их насчитывается в почве (до нескольких миллиардов бактериальных клеток на 1 грамм почвы). Много бактерий в воздухе, воде, пищевых продуктах, внутри тел и на телах живых организмов. Бактерии были обнаружены в тех местах, где другие организмы жить не могут (на ледниках, в вулканах).

Обычно бактерия - это одна клетка (хотя бывают колониальные формы). Причем эта клетка очень мелкая (от долей мкм до нескольких десятков мкм). Но главной особенностью бактериальной клетки является отсутствие клеточного ядра. Другими словами, бактерии принадлежат прокариотам .

Бактерии бывают подвижными и неподвижными. В случае неподвижных форм передвижение осуществляется с помощью жгутиков. Их может быть несколько, а может быть только один.

Клетки разных видов бактерий могут сильно отличаться между собой по форме. Бывают шаровидные бактерии (кокки ), палочковидные (бациллы ), похожие на запятую (вибрионы ), извитые (спирохеты, спириллы ) и др.

Строение бактериальной клетки

У клеток многих бактерий имеется слизистая капсула . Она выполняет защитную функцию. В частности, защищает клетку от высыхания.

Как и у клеток растений, у бактериальных клеток есть клеточная стенка . Однако, в отличие от растений, ее строение и химический состав несколько иной. Клеточная стенка состоит из слоев сложного углевода. Ее строение таково, что позволяет проникать различным веществам внутрь клетки.

Под клеточной стенкой находится цитоплазматическая мембра н а .

Бактерии относятся к прокариотам, так как в их клетках нет оформленного ядра. Они не имеют и хромосом, характерных для клеток эукариот. В состав хромосомы входит не только ДНК, но и белок. У бактерий же их хромосома состоит только из ДНК и представляет собой кольцевую молекулу. Такой генетический аппарат бактерий называется нуклеоид . Нуклеоид находится прямо в цитоплазме, обычно в центре клетки.

У бактерий нет настоящих митохондрий и ряда других клеточных органелл (комплекса Гольджи, эндоплазматической сети). Их функции выполняют впячивания клеточной цитоплазматической мембраны. Такие впячивания называются мезосомами .

В цитоплазме есть рибосомы , а также различные органические включения : белки, углеводы (гликоген), жиры. Также клетки бактерий могут содержать различные пигменты . В зависимости от наличия тех или иных пигментов или их отсутствия, бактерии могут быть бесцветными, зелеными, пурпурными.

Питание бактерий

Бактерии возникли на заре формирования жизни на Земле. Именно они «открыли» различные способы питания. Лишь потом, с усложнением организмов, четко выделились два крупных царства: Растения и Животные. Они отличаются между собой в первую очередь по способу питания. Растения являются автотрофами, а животные - гетеротрофами. У бактерий же встречаются оба типа питания.

Питание - это способ получения клеткой или организмом необходимых органических веществ. Их можно получить из вне или синтезировать самостоятельно из неорганических веществ.

Автотрофные бактерии

Автотрофные бактерии синтезируют органические вещества из неорганических. Процесс синтеза требует энергии. В зависимости от того, откуда автотрофные бактерии получают эту энергию их делят на фотосинтезирующие и хемосинтезирующие.

Фотосинтезирующие бактерии используют энергию Солнца, улавливая его излучение. В этом они сходны с растениями. Однако, если у растений в процессе фотосинтеза выделяется кислород, то у большинства фотосинтезирующих бактерий он не выделяется. То есть бактериальный фотосинтез анаэробен. Также зеленый пигмент бактерий отличается от аналогичного пигмента растений и называется бактериохлорофиллом . У бактерий нет хлоропластов. В основном фотосинтезирующие бактерии обитают в водоемах (пресных и соленых).

Хемосинтезирующие бактерии для синтеза органических веществ из неорганических используют энергию различных химических реакций. Энергия выделяется не во всех реакциях, а только в экзотермических. Некоторые такие реакции протекают в бактериальных клетках. Так в нитрифицирующих бактериях протекает реакция окисления аммиака в нитриты и нитраты. Железобактерии окисляют закисное железо в окисное. Водородные бактерии окисляют молекулы водорода.

Гетеротрофные бактерии

Гетеротрофные бактерии не способны синтезировать органические вещества из неорганических. Поэтому вынуждены получать их из окружающей среды.

Бактерии, питающиеся органическими остатками других организмов (в том числе мертвыми телами), называются бактериями-сапрофитами . По-другому их называют бактериями гниения. Таких бактерий много в почве, где они разлагают перегной до неорганических веществ, которые впоследствии используются растениями. Молочнокислые бактерии питаются сахарами, превращая их в молочную кислоту. Маслянокислые бактерии разлагают органические кислоты, углеводы, спирты до масляной кислоты.

Клубеньковые бактерии живут в корнях растений и питаются за счет органических веществ живого растения. Однако они связывают азот из воздуха и обеспечивают им растение. То есть в данном случае имеет место симбиоз. Другие гетеротрофные бактерии-симбионты обитают в пищеварительном аппарате животных, помогая переваривать пищу.

В процессе дыхания происходит разрушение органических веществ с высвобождением энергии. Эта энергия в последствии тратится на различные процессы жизнедеятельности (например, на движение).

Эффективным способом получения энергии является кислородное дыхание. Однако некоторые бактерии могут получать энергию без кислорода. Таким образом, существуют аэробные и анаэробные бактерии.

Аэробным бактериям необходим кислород, поэтому они обитают в местах, где он есть. Кислород участвует в реакции окисления органических веществ до углекислого газа и воды. В процессе такого дыхания бактерии получают относительно большое количество энергии. Такой способ дыхания характерен для подавляющего числа организмов.

Анаэробные бактерии не нуждаются в кислороде для дыхания, поэтому могут обитать в бескислородной среде. Энергию они получают за счет реакции брожения . Данный способ окисления малоэффективен.

Размножение бактерий

В большинстве случаев для бактерий характерно размножение путем деления их клетки надвое. Перед этим происходит удвоение кольцевой молекулы ДНК. Каждая дочерняя клетка получает одну из этих молекул и, следовательно, является генетической копией материнской клетки (клоном). Таким образом, для бактерий характерно бесполое размножение .

В благоприятных условиях (при достаточном количестве питательных веществ и благоприятных условиях окружающей среды) бактериальные клетки делятся очень быстро. Так от одной бактерии за сутки могут образоваться сотни миллионов клеток.

Хотя бактерии размножаются бесполым путем, в ряде случаев у них наблюдается так называемый половой процесс , который протекает в форме конъюгации . При конъюгации две разные бактериальные клетки сближаются, между их цитоплазмами устанавливается связь. Части ДНК одной клетки переходят во вторую, а части ДНК второй клетки - в первую. Таким образом, при половом процессе у бактерий происходит обмен генетической информации. Иногда при этом бактерии обмениваются не участками ДНК, а целыми молекулами ДНК.

Споры бактерий

Подавляющее большинство бактерий в неблагоприятных условиях образуют споры. Споры бактерий - это в основном способ переживания неблагоприятных условий и способ расселения, а не способ размножения.

При образовании споры цитоплазма бактериальной клетки сжимается, а сама клетка покрывается плотной толстой защитной оболочкой.

Споры бактерий сохраняют жизнеспособность в течении длительного времени и способны переживать очень неблагоприятные условия (крайне высокие и низкие температуры, высыхание).

Когда спора попадает в благоприятные условия, то происходит ее набухание. После этого защитная оболочка сбрасывается, и появляется обычная бактериальная клетка. Бывает, что при этом происходит деление клетки, и образуется несколько бактерий. То есть спорообразование сочетается с размножением.

Значение бактерий

Огромна роль бактерий в круговороте веществ в природе. В первую очередь это относится к бактериям гниения (сапрофитам). Их называют санитарами природы . Разлагая остатки растений и животных, бактерии превращают сложные органические вещества в простые неорганические (углекислый газ, воду, аммиак, сероводород).

Бактерии повышают плодородие почвы, обогащая ее азотом. В нитрифицирующих бактериях протекают реакции, в процессе которых из аммиака образуются нитриты, а из нитритов - нитраты. Клубеньковые бактерии способны усваивать атмосферный азот, синтезируя азотистые соединения. Они живут в корнях растений, образуя клубеньки. Благодаря этим бактериям, растения получают необходимые им азотистые соединения. В основном в симбиоз с клубеньковыми бактериями вступают бобовые растения. После их отмирания почва обогащается азотом. Это нередко используется в сельском хозяйстве.

В желудке жвачных животных бактерии разлагают целлюлозу, что способствует более эффективному пищеварению.

Велика положительная роль бактерий в пищевой промышленности. Многие виды бактерий используются для получения молочнокислых продуктов, сливочного масла и сыра, квашения овощей, а также в виноделии.

В химической промышленности бактерии используются при получении спиртов, ацетона, уксусной кислоты.

В медицине с помощью бактерий получают ряд антибиотиков, ферментов, гормонов и витаминов.

Однако бактерии могут приносить и вред. Они не просто портят продукты питания, но своими выделениями делают их ядовитыми.