Сколько вольт красный светодиод. Схема включения светодиодов и расчет необходимых параметров

Светоизлучающему диоду, как и человеку, необходимо питаться правильно. Только в этом случае он гарантирует многолетнюю и безотказную работу. Светодиоды имеют нелинейную вольтамперную характеристику, схожую с обычным диодом. Поэтому их питание должно осуществляться стабильным током – это один из ключевых принципов. Если его не соблюдать, последствия для светодиодов могут быть самые плачевные.

Чтобы определить, какая схема питания будет оптимальной в том или ином случае, необходимо для начала узнать исходные данные:

  • параметры светодиода, нормируемые производителем;
  • параметры питающей сети (сеть 220 В, аккумулятор, батарейки или что-то другое).

Самые важные параметры – это номинальный и максимальный ток. При номинальном обычно нормируются световые характеристики – сила света в канделах или световой поток в люменах. Максимальный ток – это предельное значение, при котором можно эксплуатировать данный прибор. Значения этих параметров в современных однокристальных приборах варьируются от нескольких мА до 3 А.

Прямое падение напряжения – напряжение питания светодиодов, которое падает на p-n-переходе при номинальном токе. Его значение пригодиться при расчете выходных параметров источника питания.

Максимальная температура корпуса и p-n-перехода, максимальное обратное напряжение - параметры тоже важные, но в случаях, когда соблюдаются токовые режимы и схема не предусматривает обратного включения, на них можно не обращать внимания.

Параметры питающей сети

При изготовлении любого устройства своими руками, необходимо определить параметры источника, который будет осуществлять питание светодиодов. Сеть 220 В, автомобильный аккумулятор на напряжение 12 В или простые батарейки – в любом случае необходимо определить диапазон питающего напряжения, то есть минимальное и максимальное его значение. На сеть 220 В дается (но не всегда соблюдается) допуск ±10%. Для аккумулятора берется в расчет напряжение при полной зарядке и в разряженном состоянии. С батарейками и так всё понятно.

В случае с автономными источниками питания важно также узнать их емкость и максимальный выходной ток.

Простейшая схема

Пусть стоит задача сделать своими руками примитивный , питающийся от одной батарейки. Возьмем, к примеру, светодиод C503C (CREE) с номинальным током I LED =20 мА и падением напряжения U LED =3,2 В.

В качестве источника питания используем литиевую батарейку на 3,7В (если использовать пальчиковые батарейки, то одной не обойдешься).

Если включать светодиод напрямую, то сила тока через светодиод будет ограничиваться только внутренним сопротивлением батарейки, что в лучшем случае будет приводить к очень быстрому ее разряду, а в худшем к выходу из строя светодиода. Простейшая схема включения показана на рисунке ниже.


Для ограничения тока используется е R=(U Б -U LED)/ I LED . В нашем случае сопротивление составит 25 Ом.

При увеличении мощности диода, схема будет усложняться, т.к. при больших токах применять резистор нецелесообразно – слишком большие потери мощности. Если напряжение питания имеет большой диапазон, эта схема тоже не годится, потому что не обеспечивает стабилизацию тока.

Развиваем тему

Питание мощных светодиодов осуществляется с применением стабилизаторов тока – . Они могут быть выполнены как на основе дискретных компонентов, так и с применением специализированных микросхем. Драйвер можно приобрести в готовом виде, а можно изготовить своими руками – это не сложно, учитывая, что схем и рекомендаций в интернете с избытком.

Еще один важный момент организации питания полупроводниковых источников света: при объединении светодиодов в группы, рекомендуется их . Это обусловлено тем, что падение напряжения на p-n-переходе имеет определенный разброс от прибора к прибору, и при токи через них будут отличаться.

Питание светодиодов от 220 В сети, организуется с помощью так называемых сетевых драйверов. По сути, это импульсные источники питания для светодиодов, они преобразуют сетевое напряжение в стабильный постоянный ток. Изготавливать такой источник своими руками – довольно сложно, если вы не специалист в этой области, а учитывая широкую номенклатуру, представленную на современном рынке еще и нецелесообразно.

Так как светодиод является полупроводниковым прибором, то при включении в цепь необходимо соблюдать полярность. Светодиод имеет два вывода, один из которых катод ("минус"), а другой - анод ("плюс").

Светодиод будет "гореть" только при прямом включении, как показано на рисунке

При обратном включении светодиод "гореть" не будет. Более того, возможен выход из строя светодиода при малых допустимых значениях обратного напряжения.

Зависимости тока от напряжения при прямом (синяя кривая) и обратном (красная кривая) включениях показаны на следующем рисунке. Не трудно определить, что каждому значению напряжения соответствует своя величина тока, протекающего через диод. Чем выше напряжение, тем выше значение тока (и тем выше яркость). Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется "рабочей" зоной, так как именно здесь обеспечивается работа светодиода.


1. Имеется один светодиод, как его подключить правильно в самом простом случае?

Что бы правильно подключить светодиод в самом простом случае, необходимо подключить его через токоограничивающий резистор.

Пример 1

Имеется светодиод с рабочим напряжением 3 вольта и рабочим током 20 мА. Необходимо подключить его к источнику с напряжением 5 вольт.

Рассчитаем сопротивление токоограничивающего резистора

R = Uгасящее / Iсветодиода
Uгасящее = Uпитания - Uсветодиода
Uпитания = 5 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R =(5-3)/0.02= 100 Ом = 0.1 кОм

То есть, надо взять резистор сопротивлением 100 Ом

P.S. Вы можете воспользоваться on-line калькулятором расчета резистора для светодиода

2. Как подключить несколько светодиодов?

Несколько светодиодов подключаем последовательно или параллельно, рассчитывая необходимые сопротивления.

Пример 1.

Имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 3 светодиода к источнику 15 вольт.

Производим расчет: 3 светодиода на 3 вольта = 9 вольт, то есть 15 вольтового источника достаточно для последовательного включения светодиодов

Расчет аналогичен предыдущему примеру

R = Uгасящее / Iсветодиода

Uпитания = 15 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (15-3*3)/0.02 = 300 Ом = 0.3 кОм

Пример 2.

Пусть имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 4 светодиода к источнику 7 вольт

Производим расчет: 4 светодиода на 3 вольта = 12 вольт, значит нам не хватит напряжения для последовательного подключения светодиодов, поэтому будем подключать их последовательно-параллельно. Разделим их на две группы по 2 светодиода. Теперь надо сделать расчет токоограничивающих резисторов. Аналогично предыдущим пунктам делаем расчет токоограничительных резисторов для каждой ветви.

R = Uгасящее/Iсветодиода
Uгасящее = Uпитания - N * Uсветодиода
Uпитания = 7 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (7-2*3)/0.02 = 50 Ом = 0.05 кОм

Так как светодиоды в ветвях имеют одинаковые параметры, то сопротивления в ветвях одинаковые.

Пример 3.

Если имеются светодиоды разных марок то комбинируем их таким образом, чтобы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление

Например имеются 5 разных светодиодов:
1-ый красный напряжение 3 вольта 20 мА
2-ой зеленый напряжение 2.5 вольта 20 мА
3-ий синий напряжение 3 вольта 50 мА
4-ый белый напряжение 2.7 вольта 50 мА
5-ый желтый напряжение 3.5 вольта 30 мА

Так как разделяем светодиоды по группам по току
1) 1-ый и 2-ой
2) 3-ий и 4-ый
3) 5-ый

рассчитываем для каждой ветви резисторы:
R = Uгасящее/Iсветодиода
Uгасящее = Uпитания - (UсветодиодаY + UсветодиодаX + …)
Uпитания = 7 В
Uсветодиода1 = 3 В
Uсветодиода2 = 2.5 В
Iсветодиода = 20 мА = 0.02 А
R1 = (7-(3+2.5))/0.02 = 75 Ом = 0.075 кОм

аналогично
R2 = 26 Ом
R3 = 117 Ом

Аналогично можно расположить любое количество светодиодов

ВАЖНОЕ ЗАМЕЧАНИЕ!!!

При подсчете токоограничительного сопротивления получаются числовые значения которых нет в стандартном ряде сопротивлений, ПОЭТОМУ подбираем резистор с сопротивлением немного большим чем рассчитали.

3. Что будет если имеется напряжение источник с напряжением 3 вольта (и меньше) и светодиод с рабочим напряжением 3 вольта?

Допустимо (НО НЕЖЕЛАТЕЛЬНО) включать светодиод в цепь без токоограничительного сопротивления. Минусы очевидны - яркость зависит от напряжения питания. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).

4. Можно ли включать несколько светодиодов с одинаковым рабочим напряжением 3 вольта параллельно друг другу к источнику 3 вольта (и менее)? В «китайских» фонариках так ведь и сделано.

Опять, это допустимо в радиолюбительской практике. Минусы такого включения: так как светодиоды имеют определенный разброс по параметрам, то будет наблюдаться следующая картина, одни будут светится ярче, а другие тусклее, что не является эстетичным, что мы и наблюдаем в приведенных выше фонариках. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).

› Светодиоды

Светодиоды в авто.

Бортовая сеть легкового авто – 12-14,5 Вольта. В зависимости заглушён двиратель или заведён.

Типичный светодиод с характеристиками: (напряжение падения 3,2 Вольта и ток 20мА = 0,02Ампера)

«Падение напряжения» и «рабочий ток» - это основные характеристики светодиода. Питается светодиод током – это ВАЖНО! Напряжение он возьмёт столько, сколько ему надо, а вот ток нужно ограничить. Падение напряжения типичного белого светодиода – 3,2 Вольта. Но у светодиодов разных цветов оно отличается для желтых и красных светодиодов - 2 - 2,5 Вольта.; для синих, зеленых, белых - 3-3,8 Вольта. Так что при выборе цвета светодиода учитывайте его падение напряжения. Ток маломощных светодиодов, как правило, не более 20мА

Что такое падение напряжения? Если мы подключим наш белый светодиод падение напряжения, которого - 3,2 Вольта, а рабочий ток 20мА=0,02 Ампера к источнику 12 Вольт, то этот светодиод съест 3,2 Вольта. Напряжение после этого светодиода снизится (упадёт) на 3,2 Вольта. 12-3,2=8,8. Но не забываем – что светодиод питается током а не напряжением т.е. сколько тока дадите - столько он через себя пропустит, а ток нужно задать. Как понять задать?! Задать – значит ограничить. Ограничить ток можно резистором, либо запитать светодиод через драйвер. Давайте рассмотрим на примерах как рассчитать и подключить светодиод к источнику воображаемой бортовой сети автомобиля, напряжение которой колеблется от 12 до 14,5 Вольт. Что бы наш светодиод не сгорел при длительном включении - рассчитывать мы будем исходя того, что в нашем автомобиле 14,5 Вольт а не 12,5 Вольта. Светодиод в этом случае будет светить менее ярко, но зато дольше прослужит. В одном из пунктов этой статьи мы рассмотрим как подключить светодиод или цепочки из светодиодов через микросхему-стабилизатор напряжения. Такой способ подключения - сохранит яркость светодиодов при изменении оборотов двигателя.

Сперва делаем расчёты. Вычитаем из имеющегося исходного напряжения 14,5 Вольта напряжение питания светодиода (3,2 Вольта). 14,5В - 3,2В =11,3В Получаем 11,3 Вольта. Вот на эти оставшиеся 11,3 Вольта нужно задать ток 20мА - что бы светодиод не сгорел. Далее нам в помощь Закон Ома для участка электрической цепи, то есть для вашего светодиода и резистора. R=U/I . Где R - сопротивление резистора, U - напряжение, которое нужно погасить, I - ток в цепи. То есть, чтобы получить сопротивление гасящего резистора, нужно разделить напряжение, которое нужно погасить, на ток, который нужно получить. Ток в формулу подставляется в амперах, в одном ампере 1000 миллиампер, то есть в нашем случае 20 мА - 0,02 А. Пользуясь формулой вычисляем. R = 11,3 / 0,02. Получаем 565 Ом. Итак, нам нужен резистор номиналом 565 Ом. Самый ближайший по номиналу, который вы сможете найти в радиомагазине будет 560 Ом. Мощность резистора желательно взять 0,25Вт. Этот резистор мы подключаем последовательно к светодиоду причём не важно к АНОДУ(плюсовому) или КАТОДУ(минусовому) выводу - главное что бы на АНОД вы подали плюс, а на КАТОД минус. Так сказать - соблюдали полярность. И наш резистор благополучно рассеет лишний ток в тепло. Резистор рекомендуется припаивать непосредственно к светодиоду.

Оба варианта приемлемы


Если теперь в нашу цепь светодиода и резистора мы включим последовательно амперметр он должен показать 20 миллиампер или около того. У резисторов и светодиодов есть разброс параметров, поэтому ток может отличаться в обе стороны, но незначительно. Если прибор показывает значение от 15 до 23 мА - нормально. Чем больше ток, тем ярче светит светодиод, но тем меньше срок его службы. Поэтому для обычных светодиодов не рекомендуют устанавливать ток выше 20 мА.


Соединение светодиода с резистором и с проводами лучше всего осуществлять пайкой, вибрации автомобиля и перепады температур в последствии сказываются на соединениях, а пайка это один из прочных видов соединений.

Во избежании короткого замыкания открытые контакты необходимо изолировать термоусадочной трубкой или изолентой.

Процесс монтажа и пайки производить при отключенном напряжении питания. Питание можно подавать только после того, как убедитесь что всё сделали правильно и все открытые проводники изолированы.

Время пайки контактов не более 3 секунд, иначе можете перегреть кристалл светодиода. Лучше будет, если паяемый контакт будет прихвачен пинцетом. Во-первых, так удобнее держать светодиод, а во-вторых пинцет рассеет лишнее тепло и не даст перегреется кристаллу.

Второй вариант. Подключение двух светодиодов (последовательно) через резистор.


Подключение одного светодиода на 14,5 Вольт мы освоили. Ура! Теперь давайте сделаем шаг вперёд и разберёмся как подключить последовательно два светодиода. По большому счёту – с двумя светодиодами включёнными последовательно будет использован всё тот же метод подключения, но на всякий случай мы разберём его не менее подробно что и первый.

Сперва делаем расчёты. Вычитаем из имеющегося исходного напряжения 14,5 Вольта напряжение питания теперь уже двух светодиодов (2х3,2 Вольта = 6,4 Вольта). 14,5В - 6,4В = 8,1В. Получаем 8,1 Вольта. Вот на эти оставшиеся 8,1 Вольта нужно задать ток 20мА - что бы светодиод не сгорел. Далее нам в помощь Закон Ома для участка электрической цепи, то есть для вашего светодиода и резистора. R=U/I . Где R - сопротивление резистора, U - напряжение, которое нужно погасить, I - ток в цепи. То есть, чтобы получить сопротивление гасящего резистора, нужно разделить напряжение, которое нужно погасить, на ток, который нужно получить. А получит нам надо 20мА. Ток в формулу подставляется в амперах, в одном ампере 1000 миллиампер, то есть в нашем случае 20 мА = 0,02 А. Пользуясь формулой вычисляем. R = 8,1 / 0,02. Получаем 405 Ом. Итак, нам нужен резистор номиналом 405 Ом. Самый ближайший по номиналу, который вы сможете найти в радиомагазине будет 430 Ом. Мощность резистора желательно взять 0,25Вт. Этот резистор мы подключаем последовательно к светодиоду причём не важно к АНОДУ(плюсовому) или КАТОДУ(минусовому) выводу - главное что бы на АНОД вы подали плюс, а на КАТОД минус. Так сказать - соблюдали полярность. И наш резистор благополучно рассеет лишний ток в тепло. Резистор рекомендуется припаивать непосредственно к светодиоду.



Если теперь в нашу цепь двух светодиодов и резистора мы включим последовательно амперметр он снова должен показать 20 миллиАмпер. Т.к. сколько бы вы ни включили в последовательную цепочку одинаковых светодиодов - ток в это цепочке останется неизменным. Вот мы видим на приборе 20мА или около того. У резисторов и светодиодов есть разброс параметров, поэтому ток может отличаться в обе стороны, но незначительно. Если значение от 15 до 23 мА - нормально. Чем больше ток, тем ярче светит светодиод, но тем меньше срок его службы. Поэтому для обычных светодиодов не рекомендуют устанавливать ток выше 20 мА.


Третий вариант. Подключение трёх светодиодов (последовательно) через резистор.


Подключение трёх светодиодов последовательно через резистор ничем не отличается от выше пройденного нами подключения двух. Всё тот же метод – те же формулы. Разве что номинал резистора изменится. Давайте посмотрим каким он будет.

Сперва делаем расчёты. Вычитаем из имеющегося исходного напряжения 14,5 Вольта напряжение питания теперь уже трёх светодиодов (3х3,2 Вольта = 9,6 Вольта). 14,5В - 9,6В = 4,9В. Получаем 4,9 Вольта. Вот на эти оставшиеся 4,9 Вольта нужно задать ток 20мА - что бы светодиод не сгорел. Далее нам в помощь Закон Ома для участка электрической цепи, то есть для вашего светодиода и резистора. R=U/I . Где R - сопротивление резистора, U - напряжение, которое нужно погасить, I - ток в цепи. То есть, чтобы получить сопротивление гасящего резистора, нужно разделить напряжение, которое нужно погасить, на ток, который нужно получить. Ток в формулу подставляется в амперах, в одном ампере 1000 миллиампер, то есть в нашем случае 20 мА - 0,02 А. Пользуясь формулой вычисляем. R = 4,9 / 0,02. Получаем 245 Ом. Итак, нам нужен резистор номиналом 245 Ом. Самый ближайший по номиналу, который вы сможете найти в радиомагазине будет 240 Ом. Мощность резистора желательно взять 0,25Вт. Этот резистор мы подключаем последовательно к светодиоду причём не важно к АНОДУ(плюсовому) или КАТОДУ(минусовому) выводу - главное что бы на АНОД вы подали плюс, а на КАТОД минус. Так сказать - соблюдали полярность. И наш резистор благополучно рассеет лишний ток в тепло. Резистор рекомендуется припаивать непосредственно к светодиоду.

Распространённая и "всеми нами любимая" светодиодная лента на 12 Вольт - устроена таким же образом, она состоит из подобных цепочек из трёх последовательно-включённых светодиодов, а цепочки в свою очередь между собой соеденены в ней паралельно.

По большому счёту на напряжение 14,5 Вольта можно подключить цепочку в которой находится до четырех светодиодов с падением напряжения 3,2 Вольта и ещё останется 1,7 Вольт которые нужно будет погасить резистором. 14,5-3,2-3,2-3,2-3,2=1,7 Но мы условились, что считаем на воображаемую бортовую сеть автомобиля, напряжение в которой от 12 до 14,5 Вольта. Помните? Так что когда в бортовой сети напряжение снизится до 12 Вольт светодиоды в цепочке перестанут светится потому что общее падение напряжение четырёх светодиодов выше 12 Вольт, а если быть точнее то оно составит – 3,2 х 4 = 12,8 Вольта. Именно поэтому ограничимся тремя светодиодами в цепочке.

2 года

В предыдущих статьях были описаны различные вопросы подключения светодиодов. Но в одной статье всего не написать, поэтому придется эту тему продолжить. Здесь речь пойдет о различных способах включения светодиодов.

Как было сказано в упомянутых статьях, т.е. ток через него должен быть ограничен с помощью резистора. Как рассчитать этот резистор, было уже рассказано, повторяться здесь не будем, но формулу, на всякий случай, приведем еще раз.

Рисунок 1.

Здесь Uпит. - напряжение питания, Uпад. - падение напряжение на светодиоде, R - сопротивление ограничивающего резистора, I - ток через светодиод.

Однако, несмотря на всю теорию, китайская промышленность выпускает всевозможные сувениры, брелоки, зажигалки, в которых светодиод включен без ограничительного резистора: просто две-три дисковых батарейки и один светодиод. В этом случае ток ограничивается внутренним сопротивлением батареи, мощности которой просто не хватает, чтобы спалить светодиод.

Но тут, кроме перегорания, есть и еще одно неприятное свойство - деградация светодиодов, более всего присущее светодиодам белого и синего цветов: через некоторое время яркость свечения становится совсем незначительной, хотя ток через светодиод протекает вполне достаточный, на уровне номинального.

Нельзя сказать, что не светит вовсе, свечение еле заметно, но это уже не фонарик. Если при номинальном токе деградация происходит не ранее, чем через год непрерывного свечения, то при завышенном токе дождаться этого явления можно через полчаса. Такое включение светодиода следует назвать плохим.

Подобную схему можно объяснить лишь стремлением сэкономить на одном резисторе, припое, и трудозатратах, что при массовых масштабах производства, видимо, оправдано. Кроме того, зажигалка или брелок вещь одноразовая, копеечная: кончился газ или села батарейка - сувенир просто выкинули.

Рисунок 2. Схема плохая, но применяется достаточно часто.

Очень интересные вещи получаются (конечно, случайно), если по такой схеме подключить светодиод к блоку питания с выходным напряжением 12В и током не менее 3А: происходит ослепительная вспышка, раздается достаточно громкий хлопок, дымок, и остается удушливый запах. Так и вспоминается вот такая притча: «Можно ли посмотреть на Солнце в телескоп? Да, но только два раза. Один раз левым глазом, другой правым». Кстати, подключение светодиода без ограничительного резистора наиболее распространенная ошибка у начинающих, и о ней хотелось бы предупредить.

Чтобы исправить это положение, продлить срок службы светодиода, схему следовало бы чуточку изменить.

Рисунок 3. Хорошая схема, правильная.

Именно такую схему следует считать хорошей или правильной. Чтобы проверить, правильно ли указан номинал резистора R1, можно воспользоваться формулой, показанной на рисунке 1. Будем считать, что падение напряжения на светодиоде 2В, ток 20мА, напряжение питания 3В обусловлено применением двух пальчиковых батареек.

А вообще не надо стремиться ограничить ток на уровне предельно допустимых 20мА, можно запитать светодиод меньшим током, ну, хотя бы, миллиампер 15…18. При этом произойдет совсем незначительное уменьшение яркости, который глаз человека, в силу особенностей устройства, не заметит совсем, а вот срок службы светодиода намного увеличится.

Еще один пример плохого включения светодиодов можно встретить в различных фонариках, уже более мощных, нежели брелоки и зажигалки. В этом случае некоторое количество светодиодов, иногда достаточно большое, просто включено параллельно, и тоже без ограничительного резистора, в роли которого опять же выступает внутреннее сопротивление батареи. Такие фонарики достаточно часто попадают в ремонт именно по причине выгорания светодиодов.


Рисунок 4. Совсем плохая схема включения.

Казалось бы, исправить положение может схема, показанная на рисунке 5. Всего один резистор, и дело, казалось бы, пошло на поправку.


Рисунок 5. Так уже немного лучше.

Но и такое включение поможет мало. Дело в том, что в природе просто не найти двух одинаковых полупроводниковых приборов. Именно поэтому, например, транзисторы одного типа имеют различный коэффициент усиления, даже если они из одной производственной партии. Тиристоры и симисторы тоже бывают разные. Некоторые открываются легко, а другие настолько тяжко, что от их применения приходится отказаться. То же можно сказать и о светодиодах - двух абсолютно одинаковых, тем более трех или целой кучи, найти просто невозможно.

Замечание на тему. В DataSheet на светодиодную сборку SMD-5050 (три независимых светодиода в одном корпусе) включение, показанное на рисунке 5, не рекомендуется. Мол, из-за разброса параметров отдельных светодиодов, может быть заметна разница в их свечении. А казалось бы, в одном корпусе!

Никакого коэффициента усиления у светодиодов, конечно же, нет, зато есть такой важный параметр, как прямое падение напряжения. И если даже светодиоды взяты из одной технологической партии, из одной упаковки, то двух одинаковых в ней просто не будет. Поэтому ток у всех светодиодов будет разный. Тот светодиод, у которого ток будет больше всех, и рано или поздно превысит номинальный, сгорит раньше всех.

В связи с этим прискорбным событием весь возможный ток пойдет через два оставшихся в живых светодиода, естественно, превышая номинальный. Ведь резистор-то рассчитывался «на троих», на три светодиода. Повышенный ток вызовет и повышенный нагрев кристаллов светодиодов, и тот, который окажется «слабее», тоже сгорает. Последнему светодиоду также не остается ничего иного, как последовать примеру своих товарищей. Такая вот цепная реакция получается.

В данном случае под словом «сгорит» подразумевается просто разрыв цепи. Но может произойти, что в одном из светодиодов получится элементарно короткое замыкание, шунтирующее остальные два светодиода. Естественно, что они обязательно погаснут, хотя и останутся в живых. Резистор при такой неисправности будет усиленно греться и в конце концов, может быть, сгорит.

Чтобы такого не произошло, схему надо немного изменить: для каждого светодиода установить свой резистор, что и показано на рисунке 6.

Рисунок 6. А вот так светодиоды прослужат очень долго.

Здесь все, как требуется, все по правилам схемотехники: ток каждого светодиода будет ограничен своим резистором. В такой схеме токи через светодиоды не зависят друг от друга.

Но и это включение не вызывает особого восторга, поскольку количество резисторов равно количеству светодиодов. А хотелось бы, чтобы светодиодов было побольше, а резисторов поменьше. Как же быть?

Выход из этого положения достаточно простой. Каждый светодиод надо заменить цепочкой последовательно включенных светодиодов, как показано на рисунке 7.


Рисунок 7. Параллельное включение гирлянд.

Платой за такое усовершенствование будет увеличение напряжения питания. Если для одного светодиода достаточно всего трех вольт, то даже два светодиода, включенных последовательно, от такого напряжения уже не зажечь. Так какое же напряжение понадобится для включения гирлянды из светодиодов? Или по-другому, сколько светодиодов можно подключить к источнику питания с напряжением, например, 12В?

Замечание. Под названием «гирлянда» здесь и далее следует понимать не только елочное украшение, но также любой осветительный светодиодный прибор, в котором светодиоды соединены последовательно или параллельно. Главное, что светодиод не один. Гирлянда, она и в Африке гирлянда!

Чтобы получить ответ на этот вопрос, достаточно напряжение питания просто разделить на падение напряжения на светодиоде. В большинстве случаев при расчетах это напряжение принимается 2В. Тогда получается 12/2=6. Но не надо забывать, что какая-то часть напряжения должна остаться для гасящего резистора, хотя бы вольта 2.

Получается, что на светодиоды остается только 10В, и количество светодиодов станет 10/2=5. При таком положении дел, чтобы получить ток 20мА, ограничительный резистор должен иметь номинал 2В/20мА=100Ом. Мощность резистора при этом составит P=U*I=2В*20мА=40мВт.

Такой расчет вполне справедлив, если прямое напряжение светодиодов в гирлянде, как было указано, 2В. Именно это значение часто принимается при расчетах, как некоторое среднее. Но на самом деле это напряжение зависит от типа светодиодов, от цвета свечения. Поэтому при расчетах гирлянд следует ориентироваться на тип светодиодов. Падения напряжения для светодиодов разных типов приведены в таблице, показанной на рисунке 8.


Рисунок 8. Падение напряжения на светодиодах разных цветов.

Таким образом, при напряжении источника питания 12В, за вычетом падения напряжения на токоограничивающем резисторе, всего можно подключить 10/3,7=2,7027 белых светодиодов. Но кусочек от светодиода не отрежешь, поэтому подключить возможно только два светодиода. Такой результат получается если из таблицы взять максимальное значение падения напряжения.

Если же в расчет подставить 3В, то совершенно очевидно, что подключить возможно три светодиода. При этом каждый раз придется кропотливо пересчитывать сопротивление ограничительного резистора. Если реальные светодиоды окажутся с падением напряжения 3,7В, а может выше, три светодиода могут и не зажечься. Так что лучше остановиться на двух.

Принципиально не важно, какого цвета будут светодиоды, просто при расчете придется учитывать разные падения напряжений в зависимости от цвета свечения светодиода. Главное, чтобы они были рассчитаны на один ток. Нельзя собрать последовательную гирлянду из светодиодов, часть которых с током 20мА, а другая часть из 10-ти миллиамперных.

Понятно, что при токе 20мА светодиоды с номинальным током 10мА попросту сгорят. Если же ограничить ток на уровне 10мА, то 20-ти миллиамперные засветятся недостаточно ярко, примерно как в выключателе со светодиодом: ночью видно, днем нет.

Чтобы облегчить себе жизнь, радиолюбители разрабатывают различные программы-калькуляторы, облегчающие всевозможные рутинные расчеты. Например, программы для расчета индуктивностей, фильтров различного типа, стабилизаторов тока. Есть такая программа и для расчета светодиодных гирлянд. Скриншот такой программы приведен на рисунке 9.

Рисунок 9. Скриншот программы «Расчет_сопротивления_резистора__Ledz_».

Программа работает без установки в системе, просто ее надо скачать и пользоваться. Все настолько просто и понятно, что никаких пояснений к скриншоту совсем не требуется. Естественно, что все светодиоды должны быть одного цвета и с одинаковым током.

Ограничительные резисторы это, конечно, хорошо. Но только тогда, когда известно, что вот эта гирлянда будет питаться от постоянного напряжения 12В, и ток через светодиоды не превысит расчетного значения. А как быть, если просто нет источника с напряжением 12В?

Такая ситуация может возникнуть, например, в грузовом автомобиле с напряжением бортовой сети 24В. Выйти из такой кризисной ситуации поможет стабилизатор тока, например, «SSC0018 - Регулируемый стабилизатор тока 20..600мА». Его внешний вид показан на рисунке 10. Такое устройство можно купить в интернет-магазинах. Цена вопроса 140…300 рублей: все зависит от фантазии и наглости продавца.

Рисунок 10. Регулируемый стабилизатор тока SSC0018

Технические характеристики стабилизатора показаны на рисунке 11.


Рисунок 11. Технические характеристики стабилизатора тока SSC0018

Изначально стабилизатор тока SSC0018 был разработан для применения в светодиодных светильниках, но может также применяться для зарядки малогабаритных аккумуляторов. Пользоваться устройством SSC0018 достаточно просто.

Сопротивление нагрузки на выходе стабилизатора тока может быть нулевым, попросту можно замкнуть накоротко выходные клеммы. Ведь стабилизаторы и источники тока не боятся коротких замыканий. При этом ток на выходе будет номинальным. Уж если установили 20мА, то столько и будет.

Из сказанного можно сделать вывод, что к выходу стабилизатора тока можно «напрямую» подключить миллиамперметр постоянного тока. Начинать такое подключение следует с самого большого предела измерений, ведь какой там отрегулирован ток никому не известно. Далее простым вращением подстроечного резистора установить требуемый ток. При этом, конечно, не забыть подключить стабилизатор тока SSC0018 к блоку питания. На рисунке 12 показана схема включения SSC0018 для питания светодиодов, соединенных параллельно.

Рисунок 12. Подключение для питания светодиодов, соединенных параллельно

Здесь все понятно из схемы. Для четырех светодиодов с током потребления 20мА на каждый на выходе стабилизатора надо выставить ток 80мА. При этом на входе стабилизатора SSC0018 потребуется напряжение чуть большее, чем падение напряжения на одном светодиоде, о чем было сказано выше. Конечно, подойдет и большее напряжение, но это приведет только к дополнительному нагреву микросхемы стабилизатора.

Замечание. Если для ограничения тока с помощью резистора напряжение источника питания должно превышать общее напряжение на светодиодах незначительно, всего вольта на два, то для нормальной работы стабилизатора тока SSC0018 это превышение должно быть несколько выше. Никак не меньше, чем 3…4В, иначе попросту не откроется регулирующий элемент стабилизатора.

На рисунке 13 показано подключение стабилизатора SSC0018 при использовании гирлянды из нескольких последовательно соединенных светодиодов.

Рисунок 13. Питание последовательной гирлянды через стабилизатор SSC0018

Рисунок взят из технической документации, поэтому попробуем рассчитать количество светодиодов в гирлянде и постоянное напряжение, потребное от блока питания.

Указанный на схеме ток, 350мА, позволяет сделать вывод, что гирлянда собрана из мощных белых светодиодов, ведь как было сказано чуть выше, основное назначение стабилизатора SSC0018 это источники освещения. Падение напряжения на белом светодиоде находится в пределах 3…3,7В. Для расчета следует взять максимальное значение 3,7В.

Максимальное входное напряжение стабилизатора SSC0018 составляет 50В. Вычитаем из этого значения 5В, необходимых для работы самого стабилизатора, остается 45В. Этим напряжением можно «засветить» 45/3,7=12,1621621… светодиодов. Очевидно, что это надо округлить до 12.

Количество светодиодов может быть и меньше. Тогда входное напряжение придется уменьшить (при этом выходной ток не изменится, так и останется 350мА как был отрегулирован), зачем на 3 светодиода, пусть даже мощных, подавать 50В? Такое издевательство может закончиться плачевно, ведь мощные светодиоды отнюдь недешевы. Какое потребуется напряжение для подключения трех мощных светодиодов желающие, а они всегда найдутся, могут посчитать сами.

Регулируемый стабилизатор тока SSC0018 устройство достаточно хорошее. Но весь вопрос в том, всегда ли оно нужно? Да и цена девайса несколько смущает. Каков же может быть выход из создавшегося положения? Все очень просто. Прекрасный стабилизатор тока получается из интегральных стабилизаторов напряжения, например, серии 78XX или LM317.

Для создания такого стабилизатора тока на базе стабилизатора напряжения потребуется всего 2 детали. Собственно сам стабилизатор и один единственный резистор, сопротивление и мощность которого поможет рассчитать программа StabDesign, скриншот которой показан на рисунке 14.

Рисунок14. Расчет стабилизатора тока с помощью программы StabDesign.

Особых пояснений программа не требует. В выпадающем меню Type выбирается тип стабилизатора, в строке Iн задается требуемый ток и нажимается кнопочка Calculate. В результате получается сопротивление резистора R1 и его мощность. На рисунке расчет проведен для тока 20мА. Это для случая, когда светодиоды соединены последовательно. Для параллельного соединения ток подсчитывается так же, как показано на рисунке 12.

Светодиодная гирлянда подключается вместо резистора Rн, символизирующего нагрузку стабилизатора тока. Возможно даже подключение всего одного светодиода. При этом катод подключается к общему проводу, а анод к резистору R1.

Входное напряжение рассмотренного стабилизатора тока находится в пределах 15…39В, поскольку применен стабилизатор 7812 с напряжением стабилизации 12В.

Казалось бы, на этом рассказ о светодиодах можно закончить. Но есть еще светодиодные ленты, о которых будет рассказано в следующей статье.

Борис Аладышкин

P.S. Если статья "Хорошие и плохие схемы включения светодиодов" была для Вас была полезна, то кликните на иконку социальных сетей и поделит есь ссылкой на статью со своими друзьями !

Несмотря на то что электрический параметр №1 для светодиода – это номинальный ток, часто для расчётов необходимо знать напряжение на его выводах. Под понятием «напряжение светодиода» понимают разницу потенциалов на p-n-переходе в открытом состоянии. Оно является справочным параметром и вместе с другими характеристиками указывается в паспорте к полупроводниковому прибору. Но иногда в руки попадают экземпляры, о которых ничего не известно. Как узнать падение напряжения на светодиоде? Об этом и пойдет речь.

Теоретический метод

Прекрасной подсказкой в этом случае является цвет свечения, внешняя форма и размеры полупроводникового прибора. Если корпус светодиода выполнен из прозрачного компаунда, то цвет его остаётся загадкой, разгадать которую поможет мультиметр. Для этого переключатель цифрового тестера переводят в положение «проверка на обрыв» и щупами поочерёдно касаются выводов светодиода. У исправного элемента в прямом смещении будет наблюдаться небольшое свечение кристалла. Таким образом, можно сделать вывод не только о цвете свечения, но и о работоспособности полупроводникового прибора. Существуют и другие способы тестирования излучающих диодов, о которых подробно написано в .

Светоизлучающие диоды разных цветов изготавливают из различных полупроводниковых материалов. Именно химический состав полупроводника во многом определяет напряжение питания светодиодов, точнее, падение напряжение на p-n-переходе. В связи с тем, что в производстве кристаллов используют десятки химических соединений, точного напряжения для всех светодиодов одного цвета не существует. Однако есть определённый диапазон значений, которых зачастую достаточно для проведения предварительных расчетов элементов электронной цепи. С одной стороны, размер и внешний вид корпуса не влияют на прямое напряжение светодиода. Но,с другой стороны. через линзу можно увидеть количество излучающих кристаллов, которые могут быть соединены последовательно. Слой люминофора в SMD светодиодах может скрывать целую цепочку из кристаллов. Ярким примером является миниатюрные многокристальные светодиоды от компании , падение напряжения на которых зачастую значительно превышает 3 вольта.

В последние годы появились белые SMD светодиоды, в корпусе которых размещено 3 последовательно соединённых кристалла. Их часто можно встретить в китайских светодиодных лампах на 220 вольт. Естественно убедиться в исправности led-кристаллов в такой лампе при помощи мультиметра не удастся. Стандартная батарейка тестера выдаёт 9В, а минимальное напряжение срабатывания трёхкристального белого светоизлучающего диода – 9,6В. Также встречаются двухкристальная модификация с порогом срабатывания от 6 вольт.

Узнать все технические характеристики светодиода можно из интернета. Для этого нужно скачать datasheet на схожую по внешним признакам модель, обязательно такого же цвета свечения, сверить паспортные размеры с действительными и выписать номинальные значения тока и падения напряжения. Следует учитывать, что данная методика весьма приблизительна, так как в одинаковом корпусе могут быть изготовлены светодиоды на 20 мА и на 150 мА с разбросом напряжения до 0,5 вольт.

Практический метод

Самые точные данные о прямом падении напряжения на светодиоде можно получить путём проведения практических измерений. Для этого понадобится регулируемый блок питания (БП) постоянного тока с напряжение от 0 до 12 вольт, вольтметр или мультиметр и резистор на 510 Ом (можно больше). Лабораторная схема для тестирования показана на рисунке.

Здесь всё просто: резистор ограничивает ток, а вольтметр отслеживает прямое напряжение светодиода. Плавно увеличивая напряжение от источника питания, наблюдают за ростом показаний на вольтметре. В момент достижения порога срабатывания светодиод начнёт излучать свет. В какой-то момент яркость достигнет номинального значения, а показания вольтметра перестанут резко нарастать. Это означает, что p-n-переход открыт, и дальнейший прирост напряжения с выхода БП будет прикладываться только к резистору.

Текущие показания на экране и будут номинальным прямым напряжением светодиода. Если ещё продолжить наращивать питание схемы, то расти будет только ток через полупроводник, а разность потенциалов на нём изменится не более чем на 0,1-0,2 вольт. Чрезмерное превышение тока приведёт к перегреву кристалла и электрическому пробою p-n-перехода.

Если рабочее напряжение на светодиоде установилось около 1,9 вольт, но при этом свечение отсутствует, то возможно тестируется инфракрасный диод. Чтобы убедиться в этом, нужно направить поток излучения на включенную фотокамеру телефона. На экране должно появиться белое пятно.

В отсутствии регулируемого блока питания можно воспользоваться «кроной» на 9В. Также можно задействовать в измерениях сетевой адаптер, который выдаёт выпрямленное стабилизированное напряжение, и пересчитать номинал сопротивления резистора.

Читайте так же