Наибольшее общее кратное и наименьший общий делитель. Признаки делимости и методы группировки (2019). Название чисел

Целые числа - это натуральные числа , а также противоположные им числа и нуль.

Целые числа — расширение множества натуральных чисел N , которое получается путем добавления к N 0 и отрицательных чисел типа − n . Множество целых чисел обозначают Z .

Сумма , разность и произведение целых чисел дают снова целые числа, т.е. целые числа составляют кольцо относительно операций сложения и умножения.

Целые числа на числовой оси:

Сколько целых чисел? Какое количество целых чисел? Самого большого и самого маленького целого числа нет. Этот ряд бесконечен. Наибольшее и наименьшее целое число не существует.

Натуральные числа еще называются положительными целыми числами , т.е. фраза «натуральное число» и «положительное целое число» это одно и то же.

Ни обыкновенные, ни десятичные дроби не являются целыми числами. Но существуют дроби с целыми числами.

Примеры целых чисел: -8, 111, 0, 1285642, -20051 и так далее.

Говоря простым языком, целые числа - это (∞... -4,-3,-2,-1,0,1,2,3,4...+ ∞) - последовательность целых чисел. То есть те, у которых дробная часть ({}) равна нулю. Они не имеют долей.

Натуральные числа - это целые, положительные числа. Целые числа, примеры : (1,2,3,4...+ ∞).

Операции над целыми числами.

1. Сумма целых чисел.

Для сложения двух целых чисел с одинаковыми знаками, необходимо сложить модули этих чисел и перед суммой поставить итоговый знак.

Пример:

(+2) + (+5) = +7.

2. Вычитание целых чисел.

Для сложения двух целых чисел с разными знаками, необходимо из модуля числа, которое больше вычесть модуль числа, которое меньше и перед ответом поставить знак большего числа по модулю.

Пример:

(-2) + (+5) = +3.

3. Умножение целых чисел.

Для умножения двух целых чисел, необходимо перемножить модули этих чисел и перед произведением поставить знак плюс (+), если исходные числа были одного знака, и минус (-) - если разного.

Пример:

(+2) ∙ (-3) = -6.

Когда умножаются несколько чисел, знак произведения будет положительным, если число неположительных сомножителей чётное, и отрицателен, если нечётное.

Пример:

(-2) ∙ (+3) ∙ (-5) ∙ (-3) ∙ (+4) = -360 (3 неположительных сомножителя).

4. Деление целых чисел.

Для деления целых чисел, необходимо поделить модуль одного на модуль другого и поставить перед результатом знак «+», если знаки чисел одинаковые, и минус, - если разные.

Пример:

(-12) : (+6) = -2.

Свойства целых чисел.

Z не замкнуто относительно деления 2-х целых чисел (например, 1/2 ). Ниже приведенная таблица показывает некоторые основные свойства сложения и умножения для любых целых a, b и c .

Свойство

сложение

умножение

замкнутость

a + b — целое

a × b — целое

ассоциативность

a + (b + c ) = (a + b ) + c

a × (b × c ) = (a × b ) × c

коммутативность

a + b = b + a

a × b = b × a

существование

нейтрального элемента

a + 0 = a

a × 1 = a

существование

противоположного элемента

a + (−a ) = 0

a ≠ ±1 1/a не является целым

дистрибутивность

умножения относительно

сложения

a × (b + c ) = (a × b ) + (a × c )

Из таблицы можно сделать вывод, что Z - это коммутативное кольцо с единицей относительно сложения и умножения.

Стандартное деление не существует на множестве целых чисел, но есть т.н деление с остатком : для всяких целых a и b , b≠0 , есть один набор целых чисел q и r , что a = bq + r и 0≤r<|b| , где |b| — абсолютная величина (модуль) числа b . Здесь a — делимое, b — делитель, q — частное, r — остаток.

В названиях арабских чисел каждая цифра принадлежит своему разряду, а каждые три цифры образуют класс. Таким образом, последняя цифра в числе обозначает количество единиц в нем и называется, соответственно, разрядом единиц. Следующая, вторая с конца, цифра обозначает десятки (разряд десятков), и третья с конца цифра указывает на количество сотен в числе – разряд сотен. Дальше разряды точно также по очереди повторяются в каждом классе, обозначая уже единицы, десятки и сотни в классах тысяч, миллионов и так далее. Если число небольшое и в нем нет цифры десятков или сотен, принято принимать их за ноль. Классы группируют цифры в числах по три, нередко в вычислительных приборах или записях между классами ставится точка или пробел, чтобы визуально разделить их. Это сделано для упрощения чтения больших чисел. Каждый класс имеет свое название: первые три цифры – это класс единиц, далее идет класс тысяч, затем миллионов, миллиардов (или биллионов) и так далее.

Поскольку мы пользуемся десятичной системой исчисления, то основная единица измерения количества – это десяток, или 10 1 . Соответственно с увеличением количества цифр в числе, увеличивается и количество десятков 10 2 ,10 3 ,10 4 и т.д. Зная количество десятков можно легко определить класс и разряд числа, например, 10 16 – это десятки квадриллионов, а 3×10 16 – это три десятка квадриллионов. Разложение чисел на десятичные компоненты происходит следующий образом – каждая цифра выводится в отдельное слагаемое, умножаясь на требуемый коэффициент 10 n , где n – положение цифры по счет слева направо.
Например: 253 981=2×10 6 +5×10 5 +3×10 4 +9×10 3 +8×10 2 +1×10 1

Также степень числа 10 используется и в написании десятичных дробей : 10 (-1) – это 0,1 или одна десятая. Аналогичным образом с предыдущим пунктом, можно разложить и десятичное число, n в таком случае будет обозначать положение цифры от запятой справа налево, например: 0,347629= 3×10 (-1) +4×10 (-2) +7×10 (-3) +6×10 (-4) +2×10 (-5) +9×10 (-6)

Названия десятичных чисел. Десятичные числа читаются по последнему разряду цифр после запятой, например 0,325 – триста двадцать пять тысячных, где тысячные – это разряд последней цифры 5 .

Таблица названий больших чисел, разрядов и классов

1-й класс единицы 1-й разряд единицы
2-й разряд десятки
3-й разряд сотни
1 = 10 0
10 = 10 1
100 = 10 2
2-й класс тысячи 1-й разряд единицы тысяч
2-й разряд десятки тысяч
3-й разряд сотни тысяч
1 000 = 10 3
10 000 = 10 4
100 000 = 10 5
3-й класс миллионы 1-й разряд единицы миллионов
2-й разряд десятки миллионов
3-й разряд сотни миллионов
1 000 000 = 10 6
10 000 000 = 10 7
100 000 000 = 10 8
4-й класс миллиарды 1-й разряд единицы миллиардов
2-й разряд десятки миллиардов
3-й разряд сотни миллиардов
1 000 000 000 = 10 9
10 000 000 000 = 10 10
100 000 000 000 = 10 11
5-й класс триллионы 1-й разряд единицы триллионов
2-й разряд десятки триллионов
3-й разряд сотни триллионов
1 000 000 000 000 = 10 12
10 000 000 000 000 = 10 13
100 000 000 000 000 = 10 14
6-й класс квадриллионы 1-й разряд единицы квадриллионов
2-й разряд десятки квадриллионов
3-й разряд десятки квадриллионов
1 000 000 000 000 000 = 10 15
10 000 000 000 000 000 = 10 16
100 000 000 000 000 000 = 10 17
7-й класс квинтиллионы 1-й разряд единицы квинтиллионов
2-й разряд десятки квинтиллионов
3-й разряд сотни квинтиллионов
1 000 000 000 000 000 000 = 10 18
10 000 000 000 000 000 000 = 10 19
100 000 000 000 000 000 000 = 10 20
8-й класс секстиллионы 1-й разряд единицы секстиллионов
2-й разряд десятки секстиллионов
3-й разряд сотни секстиллионов
1 000 000 000 000 000 000 000 = 10 21
10 000 000 000 000 000 000 000 = 10 22
1 00 000 000 000 000 000 000 000 = 10 23
9-й класс септиллионы 1-й разряд единицы септиллионов
2-й разряд десятки септиллионов
3-й разряд сотни септиллионов
1 000 000 000 000 000 000 000 000 = 10 24
10 000 000 000 000 000 000 000 000 = 10 25
100 000 000 000 000 000 000 000 000 = 10 26
10-й класс октиллион 1-й разряд единицы октиллионов
2-й разряд десятки октиллионов
3-й разряд сотни октиллионов
1 000 000 000 000 000 000 000 000 000 = 10 27
10 000 000 000 000 000 000 000 000 000 = 10 28
100 000 000 000 000 000 000 000 000 000 = 10 29

В рамках натуральных чисел можно вычесть только меньшее число из большего, а переместительный закон не включает вычитание - например, выражение 3 + 4 − 5 {\displaystyle 3+4-5} допустимо, а выражение с переставленными операндами 3 − 5 + 4 {\displaystyle 3-5+4} недопустимо...

Добавление к натуральным числам отрицательных чисел и нуля делает возможной операцию вычитания для любых пар натуральных чисел. В результате такого расширения получается множество (кольцо) «целых чисел ». При дальнейших расширениях множества чисел рациональными, вещественными, комплексными и прочими числами, для них тем же путём получаются соответствующие отрицательные значения.

Все отрицательные числа, и только они, меньше, чем ноль. На числовой оси отрицательные числа располагаются слева от нуля . Для них, как и для положительных чисел, определено отношение порядка , позволяющее сравнивать одно целое число с другим.

Для каждого натурального числа n существует одно и только одно отрицательное число, обозначаемое -n , которое дополняет n до нуля:

n + (− n) = 0. {\displaystyle n+\left(-n\right)=0.}

Оба числа называются противоположными друг для друга. Вычитание целого числа a из другого целого числа b равносильно сложению b с противоположным для a :

b − a = b + (− a) . {\displaystyle b-a=b+\left(-a\right).}

Пример: 25 − 75 = − 50. {\displaystyle 25-75=-50.}

Энциклопедичный YouTube

    1 / 3

    Математика 6 класс. ПОЛОЖИТЕЛЬНЫЕ И ОТРИЦАТЕЛЬНЫЕ ЧИСЛА. КООРДИНАТЫ НА ПРЯМОЙ.

    Математика 6 класс. Положительные и отрицательные числа

    Отрицательные числа. Противоположные числа (Слупко М.В.). Видеоурок по математике 6 класс

    Субтитры

Свойства отрицательных чисел

Отрицательные числа подчиняются практически тем же алгебраическим правилам, что и натуральные, но имеют некоторые особенности.

  1. Если любое множество положительных чисел ограничено снизу, то любое множество отрицательных чисел ограничено сверху.
  2. При умножении целых чисел действует правило знаков : произведение чисел с разными знаками отрицательно, с одинаковыми - положительно.
  3. При умножении обеих частей неравенства на отрицательное число знак неравенства меняется на обратный. Например, умножая неравенство 3 < 5 на −2, мы получаем: −6 > −10.

При делении с остатком частное может иметь любой знак, но остаток, по соглашению, всегда неотрицателен (иначе он определяется не однозначно). Например, разделим −24 на 5 с остатком:

− 24 = 5 ⋅ (− 5) + 1 = 5 ⋅ (− 4) − 4 {\displaystyle -24=5\cdot (-5)+1=5\cdot (-4)-4} .

Вариации и обобщения

Понятия положительных и отрицательных чисел можно определить в любом упорядоченном кольце. Чаще всего эти понятия относятся к одной из следующих числовых систем:

Приведенные выше свойства 1-3 имеют место и в общем случае. К комплексным числам понятия «положительный» и «отрицательный» неприменимы.

Исторический очерк

Древний Египет , Вавилон и Древняя Греция не использовали отрицательных чисел, а если получались отрицательные корни уравнений (при вычитании), они отвергались как невозможные. Исключение составлял Диофант , который в III веке уже знал правило знаков и умел умножать отрицательные числа. Однако он рассматривал их лишь как промежуточный этап, полезный для вычисления окончательного, положительного результата.

Впервые отрицательные числа были частично узаконены в Китае , а затем (примерно с VII века) и в Индии , где трактовались как долги (недостача), или, как у Диофанта, признавались как временные значения. Умножение и деление для отрицательных чисел тогда ещё не были определены. Полезность и законность отрицательных чисел утверждались постепенно. Индийский математик Брахмагупта (VII век) уже рассматривал их наравне с положительными.

В Европе признание наступило на тысячу лет позже, да и то долгое время отрицательные числа называли «ложными», «мнимыми» или «абсурдными». Первое описание их в европейской литературе появилось в «Книге абака» Леонарда Пизанского (1202 год), который трактовал отрицательные числа как долг. Бомбелли и Жирар в своих трудах считали отрицательные числа вполне допустимыми и полезными, в частности, для обозначения нехватки чего-либо. Даже в XVII веке Паскаль считал, что 0 − 4 = 0 {\displaystyle 0-4=0} , так как «ничто не может быть меньше, чем ничто» . Отголоском тех времён является то обстоятельство, что в современной арифметике операция вычитания и знак отрицательных чисел обозначаются одним и тем же символом (минус), хотя алгебраически это совершенно разные понятия.

В XVII веке , с появлением аналитической геометрии , отрицательные числа получили наглядное геометрическое представление на

Что значит целое число

Итак, рассмотрим, какие числа называют целыми.

Таким образом, целыми будут обозначаться такие числа: $0$, $±1$, $±2$, $±3$, $±4$ и т.д.

Множество натуральных чисел есть подмножеством множества целых чисел, т.е. любое натуральное будет являться целым числом, но не любое целое является натуральным числом.

Целые положительные и целые отрицательные числа

Определение 2

плюс .

Числа $3, 78, 569, 10450$ – целые положительные числа.

Определение 3

являются целые числа со знаком минус .

Числа $−3, −78, −569, -10450$ – целые отрицательные числа.

Замечание 1

Число ноль не относится ни к целым положительным, ни к целым отрицательным числам.

Целыми положительными числами являются целые числа, большие нуля.

Целыми отрицательными числами являются целые числа, меньшие нуля.

Множество натуральных целых чисел являет собой множество всех целых положительных чисел, а множество всех противоположных натуральным числам являет собой множество всех целых отрицательных чисел.

Целые неположительные и целые неотрицательные числа

Все целые положительные числа и число нуль называются целыми неотрицательными числами .

Целыми неположительными числами являются все целые отрицательные числа и число $0$.

Замечание 2

Таким образом, целым неотрицательным числом являются целые числа, большие нуля или равные нулю, а целым неположительным числом – целые числа, меньшие нуля или равные нулю.

Например, целые неположительные числа: $−32, −123, 0, −5$, а целые неотрицательные числа: $54, 123, 0, 856 342.$

Описание изменения величин при помощи целых чисел

Целые числа применяются для описания изменения числа каких-либо предметов.

Рассмотрим примеры.

Пример 1

Пусть в магазине продается какое-то число наименований товара. Когда в магазин поступит $520$ наименований товаров, то число наименований товара в магазине увеличится, а число $520$ показывает изменение числа в положительную сторону. Когда в магазине продастся $50$ наименований товара, то число наименований товара в магазине уменьшится, а число $50$ будет выражать изменение числа в отрицательную сторону. Если в магазин не будут ни привозить, ни продавать товар, то число товара будет оставаться неизменным (т.е. можно говорить о нулевом изменении числа).

В приведенном примере изменение числа товара описывается с помощью целых чисел $520$, $−50$ и $0$ соответственно. Положительное значение целого числа $520$ указывает на изменение числа в положительную сторону. Отрицательное значение целого числа $−50$ указывает на изменение числа в отрицательную сторону. Целое число $0$ указывает на неизменность числа.

Целые числа удобно использовать, т.к. не нужно явное указание на увеличение числа или уменьшение, – знак целого числа указывает на направление изменения, а значение – на количественное изменение.

С помощью целых чисел можно выразить не только изменение количества, но и изменение любой величины.

Рассмотрим пример изменения стоимости товара.

Пример 2

Повышение стоимости, например, на $20$ рублей выражается с помощью положительного целого числа $20$. Понижение стоимости, например, на $5$ рублей описывается с помощью отрицательного целого числа $−5$. Если изменений стоимости нет, то такое изменение определяется с помощью целого числа $0$.

Отдельно рассмотрим значение отрицательных целых чисел как размера долга.

Пример 3

Например, у какого-либо человека есть $5 000$ рублей. Тогда с помощью целого положительного числа $5 000$ можно показать количество рублей, которые у него есть. Человек должен оплатить квартплату в размере $7 000$ рублей, но у него таких денег нет, в таком случае подобная ситуация описывается отрицательным целым числом $−7 000$. В таком случае человек имеет $−7 000$ рублей, где «–» указывает на долг, а число $7 000$ показывает количество долга.

Если к ряду натуральных чисел приписать слева число 0, то получится ряд положительных целых чисел :

0, 1, 2, 3, 4, 5, 6, 7, ...

Целые отрицательные числа

Рассмотрим небольшой пример. На рисунке слева изображён термометр, который показывает температуру 7° тепла. Если температура понизится на 4°, то термометр будет показывать 3° тепла. Уменьшению температуры соответствует действие вычитания:

Если температура понизится на 7°, то термометр будет показывать 0°. Уменьшению температуры соответствует действие вычитания:

Если же температура понизится на 8°, то термометр покажет -1° (1° мороза). Но результат вычитания 7 - 8 нельзя записать с помощью натуральных чисел и нуля.

Проиллюстрируем вычитание на ряде целых положительных чисел:

1) От числа 7 отсчитаем влево 4 числа и получим 3:

2) От числа 7 отсчитаем влево 7 чисел и получим 0:

Отсчитать в ряду положительных целых чисел от числа 7 влево 8 чисел нельзя. Чтобы действие 7 - 8 стало выполнимым, расширим ряд положительных целых чисел. Для этого влево от нуля запишем (справа налево) по порядку все натуральные числа, добавляя к каждому из них знак - , показывающий, что это число стоит слева от нуля.

Записи -1, -2, -3, ... читают минус 1 , минус 2 , минус 3 и т. д.:

5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

Полученный ряд чисел называют рядом целых чисел . Точки слева и справа в этой записи означают, что ряд можно продолжать неограниченно вправо и влево.

Справа от числа 0 в этом ряду расположены числа, которые называют натуральными или целыми положительными (кратко - положительными ).

Слева от числа 0 в этом ряду расположены числа, которые называют целыми отрицательными (кратко - отрицательными ).

Число 0 целое, но не является ни положительным, ни отрицательным числом. Оно разделяет положительные и отрицательные числа.

Следовательно, ряд целых чисел состоит из целых отрицательных чисел, нуля и целых положительных чисел .

Сравнение целых чисел

Сравнить два целых числа - значит узнать какое из них больше, какое меньше, или определить, что числа равны.

Сравнивать целые числа можно с помощью ряда целых чисел, так как числа в нём расположены от меньшего к большему, если двигаться по ряду слева направо. Поэтому в ряду целых чисел можно заменить запятые на знак меньше:

5 < -4 < -3 < -2 < -1 < 0 < 1 < 2 < 3 < 4 < 5 < ...

Следовательно, из двух целых чисел больше то число, которое в ряду стоит правее, и меньше то, которое стоит левее , значит:

1) Любое положительное число больше нуля и больше любого отрицательного числа:

1 > 0; 15 > -16

2) Любое отрицательное число меньше нуля:

7 < 0; -357 < 0

3) Из двух отрицательных чисел больше то, которое в ряду целых чисел стоит правее.