Методика калибровки датчиков температуры серии кдт. Калибровка датчиков температуры Как откалибровать температурный датчик

  • Установка, монтаж и подключение стационарных анализаторов.
  • Приложение №4: Калибровка датчика температуры.

    При выпуске из производства встроенный в амперометрический сенсор датчик температуры калибруется по методике, алгоритм выполнения которой записан в служебном меню анализатора. Прибегать к калибровке датчика температуры следует только при замене сенсора на новый. В этом случае подключите новый сенсор к измерительному устройству и включите анализатор. Для проведения калибровки датчика температуры Вам необходимо собрать установку показанную на рисунке. С помощью этой установки необходимо обеспечить три отметки шкалы температуры в диапазоне 5 -50 о С. Если в вашей лаборатории нет термостата, можно три отметки шкалы температуры обеспечить более простым способом. Для этого Вам необходим термос, стакан с дистиллированной водой комнатной температуры и пластиковый стакан со льдом. В термос налейте дистиллированную воду подогретую до 50 +5 о С. В стакане со льдом выполните отверстие диаметром 10 мм. Для увеличения диаметра этого отверстия до 16 мм залейте в него теплой воды. Через 5-10 минут вода в лунке будет иметь температуру таяния льда ~ 0 о С.

    Для проведения калибровки датчика температуры необходимо перейти в служебное меню калибровок. Для этого войдите в меню Калибровок и, удерживая клавишу «ВНИЗ», нажать клавишу «ВВОД». В появившемся служебном меню, выберите опцию «ТЕМПЕРАТУРЫ», нажмите «ВВОД».

    В открывшемся окне выберите опцию «Нижней точки» и нажмите «ВВОД».

    Погрузите сенсор и образцовый термометр в термостатируемый стакан с температурой нижней отметки шкалы: 5+1 о С или в лунку в стакане со льдом.


    В открывшемся окне введите температуру нижней точки с помощью клавиш перемещения курсора и нажмите «ВВОД».

    После сообщения об успешной калибровке нижней точки на экране вновь появится меню калибровки датчика температуры. Выберите опцию «Верхней точки» и нажмите «ВВОД».

    Погрузите сенсор и образцовый термометр в термостатируемый стакан или термос с температурой верхней отметки шкалы и, дождавшись установления показаний термометра, нажмите «ВВОД».

    Считайте показание образцового термометра и с помощью клавиш перемещения курсора введите это значение.

    сообщения об успешной калибровке верхней точки на экране вновь появится меню калибровки датчика температуры. Выберите опцию «Поправка Т» и нажмите «ВВОД».


    Выполните инструкцию показанную на дисплее анализатора и нажмите «ВВОД».

    Дождитесь установления показаний термометра и нажмите «ВВОД».

    Считайте показание температуры с образцового термометра и введите это значение с клавиатуры. Нажмите «ВВОД».

    Встроенный датчик температуры в большинстве современных жёстких дисков может показывать неверные результаты. Разница между измеренной и фактической температурой может быть в 7-9 градусов Цельсия, а в некоторых случаях даже ещё больше.

    Чтобы решить эту проблему, рекомендуется измерить фактическую температуру жёсткого диска с помощью внешнего инфракрасного термометра или лицевой панели с датчиком температуры. А затем установить разницу между измеренным значением и температурой, которую отображает Hard Disk Sentinel (по сообщению самого диска), как температурное смещение. Это называется калибровкой.

    После измерения реальной температуры (термометром или другим внешним датчиком) смещение можно рассчитать путём вычитания значения, указанного программой из измеренного значения. Смещение может быть положительным (программа показывает меньшую температуру, чем реальная) или отрицательным (в противном случае).

    Это смещение можно указать на вкладке S.M.A.R.T. жёсткого диска, выбрав атрибут № 194 (температура жёсткого диска) и используя кнопки + / – (нажав на число между этими знаками, можно непосредственно ввести значение смещения по Цельсию ).

    Hard Disk Sentinel автоматически увеличивает (или уменьшает) все сообщённые значения температуры жёсткого диска согласно настроенным смещениям. Таким образом, правильная (реальная) температура будет отображаться в любом случае (например, при сравнении температуры жёсткого диска с пороговым значением, при сохранении отчётов и т.д.)

    Примечание: если калибровка невозможна (компьютерный блок нельзя открывать), предполагаемое значение смещения можно определить, сравнивая первое отображённое значение температуры сразу после запуска компьютера со значением температуры окружающей среды (комната, офис). В это время центральный процессор, видеокарта или другие компоненты не слишком горячие и не влияют на значение температуры жёсткого диска. Конечно, это справедливо только если компьютеру было предоставлено достаточно времени, чтобы остыть до температуры окружающей среды (не включался около 8 часов).

    Например, если температура жёсткого диска равна 17 градусов по Цельсию (сразу после запуска компьютера), а температура в помещении 22 градуса, то эта разница (5) может быть настроена как значение смещения (потому что жёсткий диск не может быть прохладнее, чем окружающая температура) . Это смещение лучше, чем ничего, но всё же внешний термометр необходим для определения надлежащего смещения температурного значения.

    Примечание : температурное смещение должно определяться по Цельсию , независимо от выбранной единицы измерения температуры (по Цельсию или по Фаренгейту).

    Примечание: незарегистрированная версия программы автоматически сбрасывает все значения смещения на 0, если пользователь перезагрузил Hard Disk Sentinel.

    Калибратор может быть использован в качестве как сухоблочного, так и жидкостного термостата. В калибраторе для охлаждения термостата до -100°С используется уникальная технология теплового насоса Стирлинга с газовым теплоносителем (FPSC). Внешний вид рабочего места представлен на рисунке 4.

    Рисунок 4 - Внешний вид рабочего места

    Термостат калибратора имеет две зоны с раздельным регулированием. Регулятор нижней зоны поддерживает заданное значение температуры, а верхней - "нулевую" разность температуры относительно нижней зоны. Такой метод обеспечивает высокую однородность температуры в рабочей зоне и низкую погрешность ее задания.

    Калибратор снабжен схемой измерения сигнала внешнего эталонного термометра сопротивления. Такой термометр устанавливается рядом с поверяемым датчиком и подключается к специальному разъему калибратора. Это существенно упрощает калибровку методом сличения, который обладает значительно меньшей погрешностью.

    Калибратор снабжен схемой DLC - динамической компенсации влияния потерь тепла через поверяемые датчики. Термометр DLC устанавливается рядом с поверяемым датчиком, измеряет перепад температуры в рабочей зоне вставной трубки и управляет регулятором верхней зоны термостата. Это обеспечивает высокую однородность распределения температуры в рабочей зоне до 60 мм от дна трубки вне зависимости от количества и/или диаметра вставленных датчиков.

    Калибратор позволяет измерять сигналы поверяемых термопар и термометров сопротивления (мВ, Ом, В, мА) по ГОСТ, IEC и DIN.

    Уникальные особенности:

    Самая низкая граница отрицательной температуры -100°С;

    Чрезвычайно высокая стабильность;

    Высокая однородность температуры в рабочей зоне до 60 мм от дна вставной трубки;

    Низкая погрешность;

    Не имеющая аналогов схема динамической компенсации влияния загрузки термостата;

    Быстрый нагрев, охлаждение;

    Полная компенсация влияния бросков и нестабильности сетевого питания;

    Встроенные средства измерения выходных сигналов различных датчиков температуры;

    Встроенная схема измерения сигнала внешнего эталонного интеллектуального термометра сопротивления, в памяти которого сохранены коэффициенты индивидуальной калибровки;

    Сохранение результатов калибровки/поверки во внутренней памяти калибратора;

    Дружественный русифицированный интерфейс пользователя на основе меню;

    Полная автоматизация поверки/калибровки датчиков температуры как в автономном режиме, так и при работе с ПК под управлением ПО, в том числе, поверка одновременно нескольких датчиков с использованием коммутаторов ASM-R.

    Кроме обеспечения задания уставок по температуре калибратор автоматически реализует поверку/калибровку в ступенчатом режиме изменения температуры, а также (в исполнении В) калибровку термореле.

    Русифицированное ПО позволяет:

    Поверить в автоматическом режиме датчики температуры или загрузить в калибратор задания на поверку/калибровку и, после ее выполнения в автономном режиме, перенести результаты поверки в ПК.

    Рекалибровать калибратор по температуре и электрическим сигналам.

    ПО обеспечивает доступ к управлению всеми функциями калибраторов и, крометого, позволяет загрузить в калибратор множественные задания на калибровку и после их выполнения в автономном или автоматическом режимах перенести результаты в персональный компьютер для обработки и хранения.

    С помощью ПО можно производить подстройку внутреннего («READ») термометра калибраторов, а также каналов измерений электрических величин, в том числе и канала внешнего («TRUE») термометра. Данное программное обеспечение позволяет загрузить в калибратор градуировочную характеристику для внешнего термопреобразователя сопротивления повышенной точности.

    Структура ПО:

    Поддержка поверяемых/калибруемых СИ температуры;

    Конфигурирование схемы поверки/калибровки СИ температуры;

    Планировщик поверки/калибровки СИ температуры;

    Поверка/калибровка СИ температуры с помощью ПК.

    Разъемы для подключения к компьютеру, а также для подключения внешних устройств представлены на рисунке 5.

    Рисунок 5 - Цифровые разъёмы.

    Согласовано Утверждаю

    Руководитель ГЦИ СИ Директор

    Зам. Директора ФГУ ВЦСМ

    __________ __________

    Методика калибровки

    датчиков температуры серии КДТ.

    Разработал

    Гл. технолог ООО«КОНТЭЛ»

    Методика калибровки датчиков температуры

    КДТ-50, КДТ-200 и КДТ-500.

    1. Перед началом калибровки проверить соответствие расположенных на плате компонентов по сборочному чертежу: КДТ50.02.01СБ – для датчиков КДТ-50; КДТ200.02.01СБ – для датчиков КДТ-200; КДТ500.02.01СБ – для датчиков КДТ-500.

    2.Калибровка электронного блока датчиков КДТ-50 и КДТ-200.

    2.1.Подключить к плате источник питания и эквивалент термометра – сопротивления ТСМ-100 согласно рис.1.

    DIV_ADBLOCK62">


    2.3.Последовательность операций регулировки.

    2.3.1.Установить на вольтметре режим «U=» и предел измерения, соответствующий значению «три знака после запятой».

    2.3.2.Установить на эквиваленте ТСМ нижнее значение измеряемой температуры: для КДТ-50–«-500С», для КДТ-200 - «00С».

    2.3.3.Подать напряжение питания.

    2.3.4.Вращением подстроечного резистора RP1 установить значение выходного тока 4 mA (показания вольтметра 0,400).

    2.3.5.Установить на эквиваленте ТСМ верхнее значение измеряемой температуры: для КДТ-50–«+500С», для КДТ-200 - «+2000С».

    2.3.6.Вращением подстроечного резистора RP2 установить значение выходного тока 20 mA (показания вольтметра 20,00).

    2.3.7.Повторять операции п. п.2.3.4 и 2.3.6 до установления выходного тока соответствующего диапазону

    измеряемой температуры в пределах погрешности, не превышающей 0,25% .

    2.3.8.Проверить линейность по промежуточным точкам.

    2.3.9.Соответствие измеряемой температуры (эквивалентного значения сопротивления) и выходного тока приведены в Приложении 1.

    3.Калибровка датчиков температуры КДТ-500.

    3.1.Подключить к плате источник питания и эквивалент термометра – сопротивления Pt-100 согласно рис.2.

    Полярность подключения источника питания значения не имеет.

    -Эквивиалент Pt 100 - специальный магазин сопротивлений, имитирующий термометр-сопротивление типа Pt-100;

    -V - Цифровой вольтметр типа В7-40;

    -R н – катушка электрического сопротивления Р331;

    -ИП – источник постоянного тока стабилизированный типа Б5-45.

    3.2.Последовательность операций калибровки.

    Ввиду отсутствия в изделии регулировочных элементов операция калибровки сводится к проверке работоспособности и линейности преобразования сопротивления в ток.

    3.2.1. Установить на вольтметре режим «U=» и предел измерения, соответствующий значению «три знака после запятой».

    3.2.2. Установить на эквиваленте Pt-100 нижнее значение измеряемой температуры: «00С».

    3.2.3. Подать напряжение питания.

    3.2.4.Показания вольтметра должны соответствовать 4 mA +/-0,25% (показания вольтметра 0,400).

    3.3.5.Установить на эквиваленте Pt-100 верхнее значение измеряемой температуры: «+5000С».

    3.3.6. Показания вольтметра должны соответствовать 20mA +/-0,25% (показания вольтметра 20,00).

    3.3.7.Проверить линейность по промежуточным точкам.

    3.3.9.Соответствие измеряемой температуры (эквивалентного значения сопротивления) и выходного тока приведены в Приложении 2.

    Примечание. Схема датчика температуры КДТ-500 рассчитана на работу совместно с Pt-100 с W100=1.3910. Применение термометра-сопротивления с W100=1.3850 приводит к увеличению основной погрешности до 0,8% в середине диапазона.

    4.После регулировки платы датчиков покрываются лаком. Рекомендуемое время сушки – 2 суток.

    После сушки платы подлежат обязательной перепроверке с целью коррекции выходного тока. Во время этой операции достаточно проверить датчик на краях диапазона.

    Исполнитель________

    Приложение 1

    Соответствие температуры, эквивалентного сопротивления и выходного тока датчиков температуры КДТ-50.


    Соответствие температуры, эквивалентного сопротивления и выходного тока датчиков температуры КДТ-200.

    При отсутствии эквивалента ТСМ-100 следует применить магазин сопротивлений МСР-63 или аналогичный.

    Приложение 2

    Соответствие температуры, эквивалентного сопротивления и выходного тока датчиков температуры КДТ-500.

    (для W100=1.3850)

    При отсутствии эквивалента Pt-100 следует применить магазин сопротивлений МСР-63 или аналогичный.

    Декабрь 2012

    Датчики имеют критически важное значение для правильного управления процессами, что зачастую не учитывается при модернизации существующих систем. Точность датчиков должна быть тщательно проверена, иначе всякая модернизация теряет смысл.

    Многие производители оборудования обещают простое, как «дважды два», включение заменяемых модулей системы, которые не требуют замены существующих сетей, проводки, системных корпусов и источников питания, и при этом сокращение времени простоя с недель и месяцев до «дня и меньше».

    Эффективность датчиков

    На самом деле все обстоит немного по-другому. Обновление систем для достижения более высокого уровня управления предприятием при помощи компьютеров и программного обеспечения, без оценки эффективности датчиков, которые снабжают эти системы данными, является бесполезным занятием. Чтобы правильно воспринимать и передавать данные технологических параметров, датчики должны быть точными.

    Датчики давления

    Точность датчиков давления, составляет, как правило, от 0,25% диапазона измеряемого давления. Для сценариев применения с менее строгими требованиями, точность может быть примерно в районе 1,25% диапазона.

    Точность датчика давления зависит от того, насколько хорошо датчик откалиброван и как долго он может сохранять эту калибровку. Первоначальная калибровка промышленных датчиков давления на калибровочной станции достигается путем применения постоянного источника давления, например, дедвейт тестера. После того, как датчик давления установлен, его точность может быть оценена с учетом влияния на первоначальную точность калибровки воздействия окружающей среды, воздействия статического давления и др.

    Автоматизированные системы калибровки работают с помощью программируемого источника давления для производства заданных сигналов давления, применяемых к датчику, который должен быть откалиброван. Вначале записываются показания датчика до калибровки. Далее датчик тестируется с увеличением и уменьшением входных сигналов для учета любого появления эффекта гистерезиса. Затем система сравнивает полученные данные с критериями приемлемости калибровки для датчиков давления и автоматически определяет, должен ли датчик быть откалиброван. Если это так, система обеспечивает необходимые сигналы к датчику, чтобы откалибровать его и держит входное значение постоянным на протяжении промежутка, пока вносятся корректировки, и низшее давление, на котором он должен быть откалиброван. После этого система выдает отчет, который включает в себя данные до и после калибровки и сохраняет их для анализа тенденций и обнаружения зарождающегося отказа.

    Датчики температуры

    Типичный вид промышленных датчиков температуры, термометр сопротивления (ТС), как правило, не достигает точности более 0,05 - 0,12°C при 300°C, при этом, обычно, требуется обеспечить точность более чем 0,1°С при 400°C. Процесс установки термометров сопротивления также может приводить к дополнительным ошибкам в точности. Другой распространенный вид датчика температуры, термопара, как правило, не может обеспечить точность лучше, чем 0,5°C при температурах до 400°C. Чем выше температура, тем меньшую точность термопары обычно можно достичь.

    Калибровка термометров сопротивления

    Точность датчика температуры устанавливается путем калибровки, сравнивая его показания с универсальной калибровочной таблицей или индивидуальной калибровкой в высокоточной среде. ТС, в отличие от термопары, могут быть «очищены» и перекалиброваны после установки. Промышленные датчики температуры, как правило, калибруются в резервуарах со льдом, водой, маслом или песком, а также в печи, или путем комбинирования этих методов. Тип калибровочного резервуара зависит от выбранного температурного диапазона, требований к точности и от применения датчиков. Процесс калибровки обычно включает в себя измерение температуры калибровочного резервуара с использованием стандартного термометра. Для индивидуально калиброванных ТС, точность обеспечивает процесс калибровки, который в свою очередь зависит от точности оборудования, используемого для калибровки, а также ошибок, таких как гистерезис, самонагревание, интерполяция и ошибки при монтаже.

    Калибровка термопары

    Если ТС может быть перекалиброван и после установки, то термопара - нет. Термопару, которая потеряла свою калибровку, следует заменить. Промышленные термопары обычно не калибруются индивидуально. Вместо этого, их показания сравниваются со стандартными справочными таблицами. Для калибровки используются, как правило, один из двух методов: метод сличения (в котором ЭДС термопары сравнивается с эталонным датчиком) или метод фиксированной точки (ЭДС термопары измеряется в нескольких установленных состояниях). При оценке точности датчика температуры, важно учитывать не только калибровку самого датчика, но также влияние установки датчика и условий технологического процесса на эту точность.

    Датчики. Как оценить время отклика?

    Для отображения данных с частотой в соответствии с требованиями установки или отраслевыми нормами, датчики должны быть достаточно быстрыми в выявлении резкого изменения значения параметров процесса. Точность и время отклика по большей части являются независимыми друг от друга показателями. Так как оперативность датчиков имеет важнейшее значение для производственных систем, работы по модернизации систем должны начинаться с ее тщательной оценки, наряду с оценкой точности и надежности датчиков.

    В то время, как точность датчика может быть восстановлена путем повторной калибровки, время отклика является неотъемлемой характеристикой, которая обычно не может быть изменена после изготовления датчика. Два основных метода для оценки времени отклика датчиков, это тест погружения (для датчиков температуры) и линейный тест (для датчиков давления).

    Калибровка и время отклика датчиков, в особенности датчиков температуры, зависит в большой степени от условий технологического процесса, в том числе статического давления, температуры процесса, температуры окружающей среды и скорости потока жидкости.

    Проверка без отрыва от производства

    Существуют некоторые методы, которые часто упоминаются как тестирование на месте или он-лайн тестирование. Они были разработаны для проверки калибровки и времени отклика датчиков, уже используемых в каком-либо процессе. Для датчиков температуры, тест LCSR (Loop Current Step Response ) будет проверять динамические характеристики наиболее распространенных датчиков температуры - термопар и термометров сопротивления - там, где они установлены в операционном процессе. Метод LCSR показывает фактическое время отклика ТС (термометра сопротивления) «в процессе эксплуатации».

    В отличие от термометров сопротивления и термопар, время отклика датчиков давления, уровня и расхода обычно не изменяется после установки. Это потому, что эти датчики являются электромеханическими устройствами, которые работают независимо от температуры окружающей среды и температуры процесса. Трудность в оценке датчиков давления связана с наличием системы процесс - провод - сенсорный интерфейс, которая соединяет датчик с фактическим процессом. Эти измерительные линии (провода) добавляют несколько миллисекунд задержки времени отклика датчиков. Хотя эта задержка незначительна, гидравлические задержки могут добавить десятки миллисекунд времени отклика для измерения давления системы.

    Методика анализа шума позволяет измерять время отклика датчиков давления и измерительных линий в одном тесте. Как и в методе LCSR, техника анализа шума не мешает эксплуатации, использует существующие выходы датчиков для определения их времени отклика, и может быть выполнена удаленно для датчиков, которые установлены на производстве. Методика анализа шума основана на принципе контроля нормального выхода переменного тока датчиков давления с помощью быстрой системы сбора данных (частота от 1 кГц). Переменный ток на выходе датчика, который называется «шум», производится случайным колебаниями в процессе, связанными с турбулентностью, вибрацией и другими естественными явлениями. Так как эти посторонние шумы происходят на более высоких частотах, чем динамический отклик датчиков давления, они могут быть выделены из сигнала с помощью низкочастотной фильтрации. Как только сигнал переменного тока или шум отделяется от сигнала постоянного тока с использованием оборудования обработки сигнала, сигнал переменного тока усиливается, передается через сглаживающую фильтрацию, оцифровывается и хранится для последующего анализа. Этот анализ дает динамическое время реакции датчика давления и измерительных линий.

    Существует ряд оборудования для сбора и анализа данных об уровне шума для датчиков давления. Коммерческое оборудование для спектрального анализа может собирать данные шумы и выполнять анализ в реальном времени, но это оборудование обычно не в состоянии справиться с множеством алгоритмов анализа данных, необходимых для получения результатов с точным временем отклика. Именно поэтому системы сбора данных на базе ПК, состоящие из изолированных узлов, усилителей и фильтров для формирования сигнала и его сглаживания, часто являются оптимальным выбором для сбора данных шумов и их анализа.

    Срок службы датчиков

    Когда следует заменять датчики? Ответ прост: заменять датчики следует по истечению срока службы, установленного производителем на указанный продукт, например 20 лет. Однако, это может быть очень дорого и нецелесообразно.

    В качестве альтернативы можно продолжать использовать датчики после истечения их срока службы, но обязательно использовать системы отслеживания производительности датчика, чтобы определять надобность замены датчика и когда это следует сделать. Опыт показал, что высококачественные датчики с большой долей вероятности будут продолжать показывать хорошие результаты работы далеко за пределами диапазона службы, очерченного производителем. Консенсус между заводскими рекомендациями и реальным использованием датчиков может быть достигнут путем эксплуатации последних до тех пор, пока стабильность калибровки является приемлемой и его время отклика не уменьшается.

    Многие шутят, что датчики, которые работают правильно надо «оставить в покое», а высококачественные датчики «в возрасте» вполне могут быть так же хороши, если не лучше, чем новые датчики той же модели и того же производителя.