Калькулятор онлайн. Найти (с решением) производную функции. График функции

Приведены график и основные свойства экспоненты (е в степени х): область определения, множество значений, основные формулы, производная, интеграл, разложение в степенной ряд, действия с комплексными числами.

Определение

Частные значения

Пусть y(x) = e x . Тогда
.

Экспонента обладает свойствами показательной функции с основанием степени е > 1 .

Область определения, множество значений

Экспонента y(x) = e x определена для всех x .
Ее область определения:
- ∞ < x + ∞ .
Ее множество значений:
0 < y < + ∞ .

Экстремумы, возрастание, убывание

Экспонента является монотонно возрастающей функцией, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

Обратная функция

Обратной для экспоненты является натуральный логарифм .
;
.

Производная экспоненты

Производная е в степени х равна е в степени х :
.
Производная n-го порядка:
.
Вывод формул > > >

Интеграл

Комплексные числа

Действия с комплексными числами осуществляются при помощи формулы Эйлера :
,
где есть мнимая единица:
.

Выражения через гиперболические функции

; ;
.

Выражения через тригонометрические функции

; ;
;
.

Разложение в степенной ряд

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Свойства функций играют важную роль при их изучении. Они позволяют делать определенные выводы о функциях. Изучение данной темы крайне важно для обучающихся, особенно старших классов. Это связано с тем,что задания по данной теме довольно часто встречаются в КИМ государственной итоговой аттестации.

Видеоурок по теме «Свойства функции» разработан автором для облегчения работы учителя и его подготовки к урокам. Если использовать данный материал на уроках, то появится больше свободного времени, которое можно посвятить индивидуальному обучению или другим направлениям обучения математики в школе.

Длительность урока составляет 8:23 минут. Примерно столько же времени требуется учителю, чтобы объяснить материал на уроке, который длится 40-45 минут. При этому учитель успеет актуализировать знания обучающихся, повторить необходимый материал, просмотреть видеоурок, а затем еще и закрепить материал.

Рассмотрение материала начинается непосредственно с первого свойства, которое называется монотонность. Это понятие подробно расписывается на математическом языке, что способствует развитию математической грамотности обучающихся, а также словесно поясняется каждая запись на экране. Далее автор демонстрирует на рисунке, как выглядит монотонная функция для случаев возрастания и убывания. После этого дается определение монотонной функции. Здесь же дается правило для запоминания, которое связано с монотонностью функции. Далее предлагается рассмотреть эту теорию на примере. На рисунке изображен график, на экране последовательно выделяются промежутки возрастания и убывания. Показана и математическая запись этих промежутков.

Согласно условию другого примера, необходимо исследовать функцию на монотонность. Чтобы определить монотонность функции, автор воспользовался определением возрастающей и убывающей функции. В результате получается, что функция убывает на всей области определения.

Затем на экране демонстрируются примеры возрастающих функций на всей области определения.

Далее внимание обучающихся обращается ко второму свойству, которое называется ограниченностью. Рассмотрение этого свойства строится по аналогии с первым свойством. Рассматривается понятие ограниченности, все это иллюстрируется на рисунке, как ограниченность снизу, так и ограниченность сверху. Затем на экране появляется пример ограниченной функции.

Важными понятиями в пункте ограниченность являются наибольшее и наименьшее значение функции. В качестве иллюстрации показан рисунок и идет подробное описание этих понятий.

После примера рассматривается третье свойство, которое называется выпуклостью. Это понятие иллюстрируется с помощью рисунка. На данном свойстве автор не останавливается так же подробно, как на предыдущих. Он сразу переходит к четвертому свойству - непрерывности. Здесь вводится понятие непрерывной функции. После этого демонстрируется это свойство на рисунке с подробными пояснениями.

Далее рассматривается свойство четности и нечетности. И тут же объясняется, когда функция четная и нечетная. Объяснения сопровождаются иллюстрациями и подробными описаниями. Это показано на примерах двух функций.

И, наконец, рассматривается шестое свойство - периодичность. На нем автор не останавливается, отмечая, что примеры периодичных функций будут изучены в дальнейшем на уроках алгебры.

ТЕКСТОВАЯ РАСШИФРОВКА:

Первое свойство, которое мы рассмотрим -монотонность.

Внимание: во всех определениях рассматривается числовое множество икс большое - подмножество области определения функции.

Функция игрек равно эф от икс возрастает на множестве икс большое, которое является подмножеством области определения и если для любых икс первое из множества икс большое и икс второе из множества икс большое таких,что икс второе больше икс первого выполняется неравенство эф от икс второе больше эф от икс первое. Другими словами - большему значению аргумента соответствует большее значение функции.

Функция игрек равно эф от икс убывает на промежутке икс большое которое является подмножеством областиопределения и если для любых икс первое из множества икс большое и икс второе из множества икс большое таких,что икс второе больше икс первого выполняется неравенство эф от икс второе меньше эф от икс первое. Другими словами - большему значению аргумента соответствует меньшее значение функции.

Функция игрек равно эф от икс называется монотонной на множестве икс большое, если она на этом промежутке или убывает или возрастает.

Запомни: если функция определена и непрерывна в концах интервала возрастания или убывания, то эти точки включаются в промежуток возрастания или убывания.

Например, функция, график которой изображен на рисунке, на промежутках

от минус бесконечности до минус пяти и от трех до плюс бесконечностивозрастает, а на промежутке от минус пяти до трех убывает. Пример. Исследовать функцию на монотонность: игрек равен шесть минус два икс.

Введем обозначение: эф от икс равен шесть минус два икс.

Если икс первое меньше икс второе, то используя свойства числовых неравенств, имеем

Значит, заданная функция убывает на всей числовой прямой.

Существуют функции, являющиеся возрастающими на всей области определения, например, игрек равен ка икс плюс вэ при ка больше нуля, игрек равен икс в кубе.

Второе свойство - ограниченность.

Если все значения функции игрек равно эф от икс на множестве икс большое больше некоторого числа эм малое, то функцию игрек равно эф от икс называют ограниченной снизу на множестве икс большое из области определения.

Если все значения функции игрек равно эф от икс на множестве икс большое меньше некоторого числа эм большое, то функцию игрек равно эф от икс называют ограниченной сверху на множестве икс большое из области определения.

Запомни: если функция ограничена и сверху и снизу на всей области определения, то ее называют ограниченной.

По графику функции легко можно определить ее ограниченность.

Наибольшее значение функции обозначают игрек с индексом наибольшее. .

Игрик является наибольшим если:

Во -первых, существует точка икс нулевое из множества икс большое такая, что эф от икс нулевое равно эм большое;

Во - вторых,для любого значения икс из множества икс большое выполняется неравенство эф от икс меньше или равно эф от икс нулевое, то число эм большое называют наибольшим значением функции игрек равно эф от икс на множестве икс большое из области определения функции.

Наименьшее значение функции обозначают игрек с индексом наименьшее

Во -первых, существует точка икс нулевое из множества икс большое такая, что эф от икс нулевое равно эм;

Во - вторых,для любого значения икс из множества икс большое выполняется неравенство эф от икс больше или равно эф от икс нулевое,то число эм называют наименьшим значением функции игрек равно эф от икс на множестве икс большое из области определения функции

Полезно запомнить:

Если у функции существует наименьшее значение., то она ограничена снизу.

Если у функции существует наибольшее значение, то она ограничена сверху.

Рассмотрим пример. Найти наименьшее значение функции

Функция, график которой изображен на рисунке, ограничена снизу, наименьшее значение функции равно нулю, а наибольшего не существует, функция сверху неограниченна.

Третье свойство: выпуклость вверх, выпуклость вниз.

Если,соединить любые две точки графика функции с абсциссами из икс большое отрезком и соответствующая часть графика будет лежать ниже проведенного отрезка, то такая функция выпукла вниз на промежутке икс большое из области определения.

Если,соединить любые две точки графика функции с абсциссами из икс большое отрезком и соответствующая часть графика будет лежать выше проведенного отрезка, то такая функция выпукла вверх на промежутке икс большое из области определения.

четвертое свойство: непрерывность.

Функция называется непрерывной на промежутке, если она определена на этом промежутке и непрерывна в каждой точке этого промежутка.

Непрерывность функции на промежутке Х означает, что график функции на всей области определения сплошной, т.е. не имеет проколов и скачков.

пятое свойство: четность, нечетность.

Если область определения функции -симметричное множество и для любого х из области определения функции выполняется равенство f(-х)= f(х), то такая функция четная.

График четной функции симметричен относительно оси ординат.

Если область определения функции -симметричное множество и для любого х из области определения функции выполняется равенство f(-х)= -f(х), то такая функция нечетная.

График нечетной функции симметричен относительно начала координат.

Так же существуют функции, которые не являются ни четными, ни нечетными

шестое свойство: периодичность

примеры периодических функций будем рассматривать в дальнейшем

Если существует такое отличное от нуля число тэ большое, что для любого икс из области определения функции верно равенство эф от икс плюс тэ большое равно эф от икс и равно эф от икс минус тэ большое, то функция игрек равно эф от икс -периодическая. Число тэ большое - период функции игрек равно эф от икс

все тригонометрические функции периодические.

Операция отыскания производной называется дифференцированием.

В результате решения задач об отыскании производных у самых простых (и не очень простых) функций по определению производной как предела отношения приращения к приращению аргумента появились таблица производных и точно определённые правила дифференцирования. Первыми на ниве нахождения производных потрудились Исаак Ньютон (1643-1727) и Готфрид Вильгельм Лейбниц (1646-1716).

Поэтому в наше время, чтобы найти производную любой функции, не надо вычислять упомянутый выше предел отношения приращения функции к приращению аргумента, а нужно лишь воспользоваться таблицей производных и правилами дифференцирования. Для нахождения производной подходит следующий алгоритм.

Чтобы найти производную , надо выражение под знаком штриха разобрать на составляющие простые функции и определить, какими действиями (произведение, сумма, частное) связаны эти функции. Далее производные элементарных функций находим в таблице производных, а формулы производных произведения, суммы и частного - в правилах дифференцирования. Таблица производных и правила дифференцирования даны после первых двух примеров.

Пример 1. Найти производную функции

Решение. Из правил дифференцирования выясняем, что производная суммы функций есть сумма производных функций, т. е.

Из таблицы производных выясняем, что производная "икса" равна единице, а производная синуса - косинусу. Подставляем эти значения в сумму производных и находим требуемую условием задачи производную:

Пример 2. Найти производную функции

Решение. Дифференцируем как производную суммы, в которой второе слагаемое с постоянным множителем, его можно вынести за знак производной:

Если пока возникают вопросы, откуда что берётся, они, как правило, проясняются после ознакомления с таблицей производных и простейшими правилами дифференцирования. К ним мы и переходим прямо сейчас.

Таблица производных простых функций

1. Производная константы (числа). Любого числа (1, 2, 5, 200...), которое есть в выражении функции. Всегда равна нулю. Это очень важно помнить, так как требуется очень часто
2. Производная независимой переменной. Чаще всего "икса". Всегда равна единице. Это тоже важно запомнить надолго
3. Производная степени. В степень при решении задач нужно преобразовывать неквадратные корни.
4. Производная переменной в степени -1
5. Производная квадратного корня
6. Производная синуса
7. Производная косинуса
8. Производная тангенса
9. Производная котангенса
10. Производная арксинуса
11. Производная арккосинуса
12. Производная арктангенса
13. Производная арккотангенса
14. Производная натурального логарифма
15. Производная логарифмической функции
16. Производная экспоненты
17. Производная показательной функции

Правила дифференцирования

1. Производная суммы или разности
2. Производная произведения
2a. Производная выражения, умноженного на постоянный множитель
3. Производная частного
4. Производная сложной функции

Правило 1. Если функции

дифференцируемы в некоторой точке , то в той же точке дифференцируемы и функции

причём

т.е. производная алгебраической суммы функций равна алгебраической сумме производных этих функций.

Следствие. Если две дифференцируемые функции отличаются на постоянное слагаемое, то их производные равны , т.е.

Правило 2. Если функции

дифференцируемы в некоторой точке , то в то же точке дифференцируемо и их произведение

причём

т.е. производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой.

Следствие 1. Постоянный множитель можно выносить за знак производной :

Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные.

Например, для трёх множителей:

Правило 3. Если функции

дифференцируемы в некоторой точке и , то в этой точке дифференцируемо и их частное u/v , причём

т.е. производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя.

Где что искать на других страницах

При нахождении производной произведения и частного в реальных задачах всегда требуется применять сразу несколько правил дифференцирования, поэтому больше примеров на эти производные - в статье "Производная произведения и частного функций " .

Замечание. Следует не путать константу (то есть, число) как слагаемое в сумме и как постоянный множитель! В случае слагаемого её производная равна нулю, а в случае постоянного множителя она выносится за знак производных. Это типичная ошибка, которая встречается на начальном этапе изучения производных, но по мере решения уже нескольких одно- двухсоставных примеров средний студент этой ошибки уже не делает.

А если при дифференцировании произведения или частного у вас появилось слагаемое u "v , в котором u - число, например, 2 или 5, то есть константа, то производная этого числа будет равна нулю и, следовательно, всё слагаемое будет равно нулю (такой случай разобран в примере 10).

Другая частая ошибка - механическое решение производной сложной функции как производной простой функции. Поэтому производной сложной функции посвящена отдельная статья. Но сначала будем учиться находить производные простых функций.

По ходу не обойтись без преобразований выражений. Для этого может потребоваться открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями .

Если Вы ищете решения производных дробей со степенями и корнями, то есть, когда функция имеет вид вроде , то следуйте на занятие "Производная суммы дробей со степенями и корнями ".

Если же перед Вами задача вроде , то Вам на занятие "Производные простых тригонометрических функций".

Пошаговые примеры - как найти производную

Пример 3. Найти производную функции

Решение. Определяем части выражения функции: всё выражение представляет произведение, а его сомножители - суммы, во второй из которых одно из слагаемых содержит постоянный множитель. Применяем правило дифференцирования произведения: производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой:

Далее применяем правило дифференцирования суммы: производная алгебраической суммы функций равна алгебраической сумме производных этих функций. В нашем случае в каждой сумме второе слагаемое со знаком минус. В каждой сумме видим и независимую переменную, производная которой равна единице, и константу (число), производная которой равна нулю. Итак, "икс" у нас превращается в единицу, а минус 5 - в ноль. Во втором выражении "икс" умножен на 2, так что двойку умножаем на ту же единицу как производную "икса". Получаем следующие значения производных:

Подставляем найденные производные в сумму произведений и получаем требуемую условием задачи производную всей функции:

Пример 4. Найти производную функции

Решение. От нас требуется найти производную частного. Применяем формулу дифференцирования частного: производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя. Получаем:

Производную сомножителей в числителе мы уже нашли в примере 2. Не забудем также, что произведение, являющееся вторым сомножителем в числителе в текущем примере берётся со знаком минус:

Если Вы ищете решения таких задач, в которых надо найти производную функции, где сплошное нагромождение корней и степеней, как, например, , то добро пожаловать на занятие "Производная суммы дробей со степенями и корнями" .

Если же Вам нужно узнать больше о производных синусов, косинусов, тангенсов и других тригонометрических функций, то есть, когда функция имеет вид вроде , то Вам на урок "Производные простых тригонометрических функций" .

Пример 5. Найти производную функции

Решение. В данной функции видим произведение, один из сомножителей которых - квадратный корень из независимой переменной, с производной которого мы ознакомились в таблице производных. По правилу дифференцирования произведения и табличному значению производной квадратного корня получаем:

Пример 6. Найти производную функции

Решение. В данной функции видим частное, делимое которого - квадратный корень из независимой переменной. По правилу дифференцирования частного, которое мы повторили и применили в примере 4, и табличному значению производной квадратного корня получаем:

Чтобы избавиться от дроби в числителе, умножаем числитель и знаменатель на .

Урок по теме «Область определения и область значений функции» проводится в 10 классе в курсе алгебры и начал анализа. На объяснение материала по данной теме автор отводит 8:47 минут. этого времени достаточно для того, чтобы обучающиеся прослушали необходимую информацию, зафиксировали ее в своих тетрадях и поняли содержание материала. Примерно столько же времени затрачивает учитель на уроке при объяснении нового материала.

Автор позаботился об учителях, нагрузка которых итак достаточно велика, поэтому разработал данный видеоурок с учетом всех требований. То есть, урок соответствует возрасту обучающихся, их уровню образования и особенностей восприятия материала. Учителю останется лишь подобрать материал для закрепления новой информации, полученной из данного урока.

Урок начинается с информации о том, что функция задается вместе с областью определения. Далее автор определяет переменные xи y? как аргумент и значение функции соответственно. После этого вводятся определения понятий область определения функции и область значений функции.

Затем рассматривается пример, где функция задана графически, и необходимо определить ее область определения. Решение данного примера подробно расписывается на экране. Автор поясняет каждый момент, где обучающиеся могут допустить ошибки. Все объяснение сопровождается наглядной иллюстрацией на рисунке.

Далее автор переходит к пункту «Область определения рациональной функции». Для обучающихся говорится о том, что в область определения рациональных функций не входят те значения аргумента, которые обращают знаменатель в нуль. Это поясняется на случае общего написания рациональной функции.

Затем на этот случай рассматривается пример. Здесь необходимо найти область определения рациональной функции. Решение пример основано на той информации, которую только что автор поведал обучающимся. То есть, он находит все те значения, которые обращают знаменатель в нуль и исключает их из множества действительных чисел, получая, таким образом, область определения функции.

после этого предлагается рассмотреть еще один пример, где требуется найти область определения рациональной функции. Но здесь наблюдается следующая особенность: знаменатель дроби никогда не обращается в нуль. Поясняя это, автор делает вывод, что областью определения данной функции является множество действительных чисел. После этого примера предлагается запомнить закономерность, которая только что была использована в примере.

Далее автор переходит к пункту «Область определения иррациональной функции». Здесь важно запомнить то, что подкоренное выражение никогда не может быть отрицательным. Это подкрепляется математической интерпретацией на математической языке. Здесь же поясняется, что если иррациональное выражение в записи функции находится в знаменателе, то подкоренное выражение будет не просто неотрицательным, а строго положительным.

К этому материалу прилагается пример, где требуется найти область определения иррациональной функции. Решая неравенство: подкоренное выражение неотрицательно, автор получает значения аргумент, которые образуют область определения заданной функции.

Затем рассматривается область определения функции с натуральным логарифмом. Сначала дается теоретический экскурс по данному материалу, а затем приводится пример с подробным описанием каждого шага решения.

После всего теоретического материала автор предлагает рассмотреть три примера, где требуется найти область определения и область значений функции, заданной графически. Это можно использовать как небольшой элемент закрепления выданного только что материала.

Урок будет полезен не только учителям, но и обучающимся, которые занимаются самообразованием или пропустили урок по данной теме по определенным причинам. Из этого урока обучающиеся смогут почерпнуть не только теоретический материал, но и подкрепить полученные знания практическими упражнениями.

ТЕКСТОВАЯ РАСШИФРОВКА:

Область определения и область значений функции.

Из определения функции следует, что функция игрек равен эф от икс задается вместе с ее областью определения икс большое.

Для изучения этой темы нам необходимо вспомнить: как называется переменная икс? число у?

Независимую переменную икс называют аргументом функции, а число игрек, соответствующее числу икс, называют значением функции эф в точке икс и обозначают эф от икс

Какое множество называется областью определения функции?

Если нам дана функция у=f(х),то ее область определения - это множество значений «икс» , для которых существуют значения «игрек»и обозначают дэ большое от эф.

Область значений функции - множество, состоящее из всех чисел эф от х, таких, что икс принадлежит икс большому и обозначают е большое от эф.

Рассмотрим пример. Функция задана графически. Определить дэ большое от эф.

Область определения данной функции представляет собой объединение промежутков:
интервал от минус бесконечности до а, луч от вэ до цэ и интервал от цэ до плюс бесконечности. Действительно так, если взять любое значение «икс» из интервала от минус бесконечности до а, или из полуинтервала от вэ до цэ, или из интервала от цэ до плюс бесконечности, то для каждого такого «икс» будет существовать значение «игрек».

Как ?

Рассмотрим примеры.

Первое.

Область определения рациональной функции, т.е. аргумент у которой есть в содержится в знаменателе.

Запомните:

значения аргумента, которые обращают знаменатель в ноль - не входят в область определения данной функции .

Предположим, дана функция, содержащая некоторую дробь единица, деленная на альфа от ихс. Как вы знаете, на ноль делить нельзя: поэтому альфа от икс не равно нулю

Найти область определения функции

эф от икс равен дроби, числитель которой икс плюс два, а знаменатель - икс квадрат минус три. Данная функция задана аналитически.

Решение : обращаем внимание на знаменатель, он должен быть не нулевым. Приравняем его к нулю и найдем значение аргумента которые обращают знаменатель функции в ноль:

икс квадрат минус триравно нулю.

икс квадрат равно трем.

Полученное уравнение имеет два корня:

минус квадратный корень из трех, квадратный корень из трех.

Данные значения не входят в область определения функции , так как при этих значениях знаменатель дроби обращается в ноль.

Ответ : дэ большое от эф равен объединению промежутков:интервал от минус бесконечности до квадратного корня из трех,интервал от минус квадратного корня из трех до квадратного кореня из трех.

и интервал от квадратного кореня из трех

до плюс бесконечности.

Рассмотрим еще пример.

Найти область определения функции

эф от икс равен дроби, числитель которой единица, а знаменатель - икс квадрат плюс один.

Рассмотрим выражение стоящее в знаменателе: к квадрату числа икс прибавляют единицу он всегда положительно т.е. какое бы значение «икс» мы не взяли, знаменатель не обратится в ноль, более того, будет всегда положителен, значит область определения функции, дэ большое от эф равено множеству всех действительных чисел.

определена на всей числовой оси.

Запомните!

при любом значении «икс» и положительной константе ка :
икс квадрат плюс ка больше нуля.

Второе.

Область определения иррациональной функции (содержащий радикал или корень).

подкоренное выражение неотрицательно

Функция вида игрек равен квадратный корень из альфа от икс определена только при тех значениях икс из области определения дэ от альфа, когда альфа от икс не отрицательно, т.е. больше или равна нулю. Если функция содержащая радикал в знаменателе дроби, то альфа от х строго больше нуля.

Найти область определения функции
эф от икс равен квадратный корень из трех минус два икс.

Решение : подкоренное выражение должно быть неотрицательным:

три минус два икс больше или равно нулю

минус два икс больше или равно минус трем

два икс меньше или равно трем

икс меньше или равнотрем вторым

Ответ: дэ большое от эф равен полуинтервалу от минус бесконечности до трех вторых.

Третье .

Область определения функций с натуральным логарифмом.

Пусть функция содержит натуральный логарифм альфа от икс., то в её область определения входят только те значения икс, удовлетворяющие неравенству альфа от икс строго больше нуля.

Если логарифм находится в знаменателе: то дополнительно накладывается условие альфа от икс не равно единице, (так как натуральный логарифм единицы равен нулю).

Найти область определения функции

эф от икс равен дроби числитель равен единице, а знаменатель - натуральный логарифм из выражения икс плюс три.

Решение : в соответствии с вышесказанным составим и решим систему:

икс плюс три больше нуля

и икс плюс три не равно единице

икс больше минус трех и икс не равно минус двум.

Изобразим множество решений системы на прямой и сделаем вывод.

Ответ: дэ большое от эф равно объединению промежутков: интервалам от минус трех до минус двух и от минус двух до плюс бесконечности.

Дэ большое от эф равен отрезку от минус четырех до двух;

Е большое от эф равно отрезку от минус одного до двух;

Найтиобласть определения и область значений функции.

Дэ большое от эф равен интервалу от минус двух до пяти;

Е большое от эф равно отрезку от минус двух до трех;

Найтиобласть определения и область значений функции.

Дэ большое от эф равен отрезку от минус четырех до трех;

Е большое от эф равно отрезку от минус пяти до нуля;

Определение. Пусть функция \(y = f(x) \) определена в некотором интервале, содержащем внутри себя точку \(x_0 \). Дадим аргументу приращение \(\Delta x \) такое, чтобы не выйти из этого интервала. Найдем соответствующее приращение функции \(\Delta y \) (при переходе от точки \(x_0 \) к точке \(x_0 + \Delta x \)) и составим отношение \(\frac{\Delta y}{\Delta x} \). Если существует предел этого отношения при \(\Delta x \rightarrow 0 \), то указанный предел называют производной функции \(y=f(x) \) в точке \(x_0 \) и обозначают \(f"(x_0) \).

$$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f"(x_0) $$

Для обозначения производной часто используют символ y". Отметим, что y" = f(x) - это новая функция, но, естественно, связанная с функцией y = f(x), определенная во всех точках x, в которых существует указанный выше предел. Эту функцию называют так: производная функции у = f(x) .

Геометрический смысл производной состоит в следующем. Если к графику функции у = f(x) в точке с абсциссой х=a можно провести касательную, непараллельную оси y, то f(a) выражает угловой коэффициент касательной:
\(k = f"(a) \)

Поскольку \(k = tg(a) \), то верно равенство \(f"(a) = tg(a) \) .

А теперь истолкуем определение производной с точки зрения приближенных равенств. Пусть функция \(y = f(x) \) имеет производную в конкретной точке \(x \):
$$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f"(x) $$
Это означает, что около точки х выполняется приближенное равенство \(\frac{\Delta y}{\Delta x} \approx f"(x) \), т.е. \(\Delta y \approx f"(x) \cdot \Delta x \). Содержательный смысл полученного приближенного равенства заключается в следующем: приращение функции «почти пропорционально» приращению аргумента, причем коэффициентом пропорциональности является значение производной в заданной точке х. Например, для функции \(y = x^2 \) справедливо приближенное равенство \(\Delta y \approx 2x \cdot \Delta x \). Если внимательно проанализировать определение производной, то мы обнаружим, что в нем заложен алгоритм ее нахождения.

Сформулируем его.

Как найти производную функции у = f(x) ?

1. Зафиксировать значение \(x \), найти \(f(x) \)
2. Дать аргументу \(x \) приращение \(\Delta x \), перейти в новую точку \(x+ \Delta x \), найти \(f(x+ \Delta x) \)
3. Найти приращение функции: \(\Delta y = f(x + \Delta x) - f(x) \)
4. Составить отношение \(\frac{\Delta y}{\Delta x} \)
5. Вычислить $$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} $$
Этот предел и есть производная функции в точке x.

Если функция у = f(x) имеет производную в точке х, то ее называют дифференцируемой в точке х. Процедуру нахождения производной функции у = f(x) называют дифференцированием функции у = f(x).

Обсудим такой вопрос: как связаны между собой непрерывность и дифференцируемость функции в точке.

Пусть функция у = f(x) дифференцируема в точке х. Тогда к графику функции в точке М(х; f(x)) можно провести касательную, причем, напомним, угловой коэффициент касательной равен f"(x). Такой график не может «разрываться» в точке М, т. е. функция обязана быть непрерывной в точке х.

Это были рассуждения «на пальцах». Приведем более строгое рассуждение. Если функция у = f(x) дифференцируема в точке х, то выполняется приближенное равенство \(\Delta y \approx f"(x) \cdot \Delta x \). Если в этом равенстве \(\Delta x \) устремить к нулю, то и \(\Delta y \) будет стремиться к нулю, а это и есть условие непрерывности функции в точке.

Итак, если функция дифференцируема в точке х, то она и непрерывна в этой точке .

Обратное утверждение неверно. Например: функция у = |х| непрерывна везде, в частности в точке х = 0, но касательная к графику функции в «точке стыка» (0; 0) не существует. Если в некоторой точке к графику функции нельзя провести касательную, то в этой точке не существует производная.

Еще один пример. Функция \(y=\sqrt{x} \) непрерывна на всей числовой прямой, в том числе в точке х = 0. И касательная к графику функции существует в любой точке, в том числе в точке х = 0. Но в этой точке касательная совпадает с осью у, т. е. перпендикулярна оси абсцисс, ее уравнение имеет вид х = 0. Углового коэффициента у такой прямой нет, значит, не существует и \(f"(0) \)

Итак, мы познакомились с новым свойством функции - дифференцируемостью. А как по графику функции можно сделать вывод о ее дифференцируемости?

Ответ фактически получен выше. Если в некоторой точке к графику функции можно провести касательную, не перпендикулярную оси абсцисс, то в этой точке функция дифференцируема. Если в некоторой точке касательная к графику функции не существует или она перпендикулярна оси абсцисс, то в этой точке функция не дифференцируема.

Правила дифференцирования

Операция нахождения производной называется дифференцированием . При выполнении этой операции часто приходится работать с частными, суммами, произведениями функций, а также с «функциями функций», то есть сложными функциями. Исходя из определения производной, можно вывести правила дифференцирования, облегчающие эту работу. Если C - постоянное число и f=f(x), g=g(x) - некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования :

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ (Cf)"=Cf" $$ $$ \left(\frac{f}{g} \right) " = \frac{f"g-fg"}{g^2} $$ $$ \left(\frac{C}{g} \right) " = -\frac{Cg"}{g^2} $$ Производная сложной функции:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

Таблица производных некоторых функций

$$ \left(\frac{1}{x} \right) " = -\frac{1}{x^2} $$ $$ (\sqrt{x}) " = \frac{1}{2\sqrt{x}} $$ $$ \left(x^a \right) " = a x^{a-1} $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \left(e^x \right) " = e^x $$ $$ (\ln x)" = \frac{1}{x} $$ $$ (\log_a x)" = \frac{1}{x\ln a} $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text{tg} x)" = \frac{1}{\cos^2 x} $$ $$ (\text{ctg} x)" = -\frac{1}{\sin^2 x} $$ $$ (\arcsin x)" = \frac{1}{\sqrt{1-x^2}} $$ $$ (\arccos x)" = \frac{-1}{\sqrt{1-x^2}} $$ $$ (\text{arctg} x)" = \frac{1}{1+x^2} $$ $$ (\text{arcctg} x)" = \frac{-1}{1+x^2} $$