Кабельные лэп. Воздушные и кабельные линии электропередачи — общая информация об их устройстве. Может ли обычный человек визуально определить напряжение ЛЭП

Воздушными называются линии, предназначенные для передачи и рас-пределения ЭЭ по проводам, расположенным на открытом воздухе и под-держиваемым с помощью опор и изоляторов. Воздушные ЛЭП сооружаются и эксплуатируются в самых разнообразных климатических условиях и гео-графических районах, подвержены атмосферному воздействию (ветер, голо-лед, дождь, изменение температуры).

В связи с этим ВЛ должны сооружаться с учетом атмосферных явлений, загрязнения воздуха, условий прокладки (слабозаселенная местность, территория города, предприятия) и др. Из ана-лиза условий ВЛ следует, что материалы и конструкции линий должны удовлетворять ряду требований: экономически приемлемой стоимостью, хо-рошей электропроводностью и достаточной механической прочностью мате-риалов проводов и тросов, стойкостью их к коррозии, химическим воздействиям; линии должны быть электрически и экологически безопасны, занимать минимальную территорию.

Конструктивное исполнение воздушных линий. Основными конст-руктивными элементами ВЛ являются опоры, провода, грозозащитные тро-сы, изоляторы и линейная арматура .

По конструктивному исполнению опор наиболее распространены одно-и двухцепные ВЛ. На трассе линии могут сооружаться до четырех цепей. Трасса линии - полоса земли, на которой сооружается линия. Одна цепь вы-соковольтной ВЛ объединяет три провода (комплекта проводов) трехфазной линии, в низковольтной - от трех до пяти проводов. В целом конструктивная часть ВЛ (рис. 3.1) характеризуется типом опор, длинами пролетов, габарит-ными размерами, конструкцией фаз, количеством изоляторов.

Длины пролетов ВЛ l выбирают по экономическим соображениям, т. к. с увеличением длины пролета возрастает провис проводов, необходимо уве-личить высоту опор H, чтобы не нарушить допустимый габарит линии h (рис. 3.1, б), при этом уменьшится количество опор и изоляторов на линии. Габарит линии - наименьшее расстояние от нижней точки провода до земли (воды, полотна дороги) должно быть таким, чтобы обеспечить безопасность движения людей и транспорта под линией.

Это расстояние зависит от номи-нального напряжения линии и условий местности (населенная, ненаселен-ная). Расстояние между соседними фазами линии зависит главным образом от ее номинального напряжения. Конструкция фазы ВЛ в основном опреде-ляется количеством проводов в фазе. Если фаза выполнена несколькими про-водами, она называется расщепленной. Расщепленными выполняют фазы ВЛ высокого и сверхвысокого напряжения. При этом в одной фазе используют два провода при 330 (220) кВ, три - при 500 кВ, четыре-пять - при 750 кВ, восемь, одиннадцать - при 1150 кВ.


Опоры воздушных линий. Опоры ВЛ - конструкции, предназначен-ные для поддерживания проводов на необходимой высоте над землей, водой, или каким-то инженерным сооружением. Кроме того, на опорах в необходимых случаях подвешивают стальные заземленные тросы для защиты прово-дов от прямых ударов молнии и связанных с этим перенапряжений.

Типы и конструкции опор разнообразны. В зависимости от назначения и размещения на трассе ВЛ они подразделяются на промежуточные и анкер-ные. Отличаются опоры материалом, исполнением и способом крепления, подвязки проводов. В зависимости от материала они бывают деревянные, железобетонные и металлические.

Промежуточные опоры наиболее простые, служат для поддерживания проводов на прямых участках линии. Они встречаются наиболее часто; доля их в среднем составляет 80-90 % общего числа опор ВЛ. Провода к ним кре-пят с помощью поддерживающих (подвесных) гирлянд изоляторов или шты-ревых изоляторов. Промежуточные опоры в нормальном режиме испытыва-ют нагрузку в основном от собственного веса проводов, тросов и изоляторов, подвесные гирлянды изоляторов свисают вертикально.

Анкерные опоры устанавливают в местах жесткого крепления прово-дов; они делятся на концевые, угловые, промежуточные и специальные. Ан-керные опоры, рассчитанные на продольные и поперечные составляющие тяжения проводов (натяжные гирлянды изоляторов расположены горизон-тально), испытывают наибольшие нагрузки, поэтому они значительно слож-нее и дороже промежуточных; число их на каждой линии должно быть ми-нимальным.

В частности, концевые и угловые опоры, устанавливаемые в конце или на повороте линии, испытывают постоянное тяжение проводов и тросов: одно-стороннее или по равнодействующей угла поворота; промежуточные анкер-ные, устанавливаемые на протяженных прямых участках, также рассчитыва-ются на одностороннее тяжение, которое может возникнуть при обрыве час-ти проводов в примыкающем к опоре пролете.

Специальные опоры бывают следующих типов: переходные - для больших пролетов пересечения рек, ущелий; ответвительные - для выполне-ния ответвлений от основной линии; транспозиционные - для изменения по-рядка расположения проводов на опоре.

Наряду с назначением (типом) конструкция опоры определяется коли-чеством цепей ВЛ и взаимным расположением проводов (фаз). Опоры (и ли-нии) выполняются в одно- или двухцепном варианте, при этом провода на опорах могут размещаться треугольником, горизонтально, обратной «елкой» и шестиугольником или «бочкой» (рис. 3.2 ).

Несимметричное расположение фазных проводов по отношению друг к другу (рис. 3.2) обусловливает неодинаковость индуктивностей и емкостей разных фаз. Для обеспечения симметрии трехфазной системы и выравнива-ния по фазам реактивных параметров на длинных линиях (более 100 км) на-пряжением 110 кВ и выше осуществляют перестановку (транспозицию) про-водов в цепи с помощью соответствующих опор.

При полном цикле транспозиции каждый провод (фаза) равномерно по длине линии занимает последовательно положение всех трех фаз на опоре (рис. 3.3).

Деревянные опоры (рис. 3.4 ) изготавливают из сосны или лиственницы и применяют на линиях напряжением до 110 кВ в лесных районах, в настоящее время все меньше. Основными элементами опор являются пасынки (пристав-ки) 1, стойки 2, траверсы 3, раскосы 4, подтраверсные брусья 6 и ригели 5. Опоры просты в изготовлении, дешевы, удобны в транспортировке. Основ-ной их недостаток - недолговечность из-за гниения древесины, несмотря на ее обработку антисептиком. Применение железобетонных пасынков (приста-вок) увеличивает срок службы опор до 20-25 лет.

Железобетонные опоры (рис. 3.5) наиболее широко применяются на линиях напряжением до 750 кВ. Они могут быть свободностоящие (проме-жуточные) и с оттяжками (анкерные). Железобетонные опоры долговечнее деревянных, просты в эксплуатации, дешевле металлических.

Металлические (стальные) опоры (рис. 3.6 ) применяют на линиях на-пряжением 35 кВ и выше. К основным элементам относятся стойки 1, тра-версы 2, тросостойки 3, оттяжки 4 и фундамент 5. Они прочны и надежны, но достаточно металлоемкие, занимают большую площадь, требуют для уста-новки сооружения специальных железобетонных фундаментов и в процессе эксплуатации должны окрашиваться для предохранения от коррозии .

Металлические опоры используются в тех случаях, когда технически сложно и неэкономично сооружать ВЛ на деревянных и железобетонных опорах (переходы через реки, ущелья, выполнение отпаек от ВЛ и т. п.).

В России разработали унифицированные металлические и железобе-тонные опоры различных типов для ВЛ всех напряжений, что позволяет се-рийно их производить, ускорять и удешевлять сооружение линий.

Провода воздушных линий .

Провода предназначены для передачи электроэнергии. Наряду с хорошей электропроводностью (возможно мень-шим электрическим сопротивлением), достаточной механической прочно-стью и устойчивостью против коррозии должны удовлетворять условиям экономичности. С этой целью применяют провода из наиболее дешевых ме-таллов - алюминия, стали, специальных сплавов алюминия. Хотя медь об-ладает наибольшей проводимостью, медные провода из-за значительной стоимости и потребности для других целей в новых линиях не используют-ся.

Их использование допускается в контактных сетях, в сетях горных предприятий.

На ВЛ применяются преимущественно неизолированные (голые) про-вода. По конструктивному исполнению провода могут быть одно- и много-проволочными, полыми (рис. 3.7 ). Однопроволочные, преимущественно стальные провода, используются ограниченно в низковольтных сетях. Для придания гибкости и большей механической прочности провода изготавли-вают многопроволочными из одного металла (алюминия или стали) и из двух металлов (комбинированные) - алюминия и стали. Сталь в проводе увеличи-вает механическую прочность.

Исходя из условий механической прочности, алюминиевые провода марок А и АКП (рис. 3.7) применяют на ВЛ напряжением до 35 кВ. Воздушные линии 6-35 кВ могут также выполняться сталеалюминиевыми проводами, а выше 35 кВ линии монтируются исключительно сталеалюминиевыми проводами.

Сталеалюминиевые провода имеют вокруг стального сердечника повивы из алюминиевых проволок. Площадь сечения стальной части обычно в 4-8 раз меньше алюминиевой, но сталь воспринимает около 30-40 % всей механической нагрузки; такие провода используются на линиях с длинными пролетами и на территориях с более тяжелыми климатическими условиями (с большей толщиной стенки гололеда).

В марке сталеалюминиевых прово-дов указывается сечение алюминиевой и стальной части, например, АС 70/11, а также данные об антикоррозийной защите, например, АСКС, АСКП - такие же провода, как и АС, но с заполнителем сердечника (С) или всего провода (П) антикоррозийной смазкой; АСК - такой же провод, как и АС, но с сердечником, покрытым полиэтиленовой плёнкой. Провода с антикорро-зийной защитой применяются в районах, где воздух загрязнен примесями, действующими разрушающе на алюминий и сталь. Площади сечения прово-дов нормированы Государственным стандартом.

Повышение диаметров проводов при неизменности расходования про-водникового материала может осуществляться применением проводов с на-полнителем из диэлектрика и полых проводов (рис. 3.7, г, д). Такое использо-вание снижает потери на коронирование (см. п. 2.2). Полые провода исполь-зуются главным образом для ошиновки распределительных устройств 220 кВ и выше.

Провода из сплавов алюминия (АН - нетермообработанные, АЖ - термообработанные) имеют большую по сравнению с алюминиевыми меха-ническую прочность и практически такую же электрическую проводимость. Они используются на ВЛ напряжением выше 1 кВ в районах с толщиной стенки гололеда до 20 мм.

Всё большее применение находят ВЛ с самонесущими изолированны-ми проводами напряжением 0,38-10 кВ. В линиях напряжением 380/220 В провода состоят из несущего неизолированного провода, являющегося нуле-вым, трёх изолированных фазных проводов, одного изолированного провода (любой фазы) наружного освещения. Фазные изолированные провода навиты вокруг несущего нулевого провода (рис. 3.8).

Несущий провод является сталеалюминиевым, а фазные - алюминие-выми. Последние покрыты светостойким термостабилизированным (сшитым) полиэтиленом (провод типа АПВ). К преимуществам ВЛ с изолированными проводами перед линиями с голыми проводами можно отнести отсутствие изоляторов на опорах, максимальное использование высоты опоры для под-вески проводов; нет необходимости в обрезке деревьев в зоне прохождения линии.

Грозозащитные тросы наряду с искровыми промежутками, разрядни-ками, ограничителями напряжений и устройствами заземления служат для защиты линии от атмосферных перенапряжений (грозовых разрядов). Тросы подвешивают над фазными проводами (рис. 3.5 ) на ВЛ напряжением 35 кВ и выше в зависимости от района по грозовой деятельности и материала опор, что регламентируется Правилами устройств электроустановок (ПУЭ).

В каче-стве грозозащитных проводов обычно применяют стальные оцинкованные канаты марок С 35, С 50 и С 70, а при использовании тросов для высокочас-тотной связи - сталеалюминевые провода. Крепление тросов на всех опорах ВЛ напряжением 220-750 кВ должно быть выполнено при помощи изолято-ра, шунтированного искровым промежутком. На линиях 35-110 кВ крепле-ние тросов к металлическим и железобетонным промежуточным опорам осуществляется без изоляции троса.

Изоляторы воздушных линий. Изоляторы предназначены для изоля-ции и крепления проводов. Изготавливаются они из фарфора и закаленного стекла - материалов, обладающих высокой механической и электрической прочностью и стойкостью к атмосферным воздействиям. Существенным дос-тоинством стеклянных изоляторов является то, что при повреждении зака-ленное стекло рассыпается. Это облегчает нахождение поврежденных изоля-торов на линии.

По конструкции, способу закрепления на опоре изоляторы разделяют на штыревые и подвесные. Штыревые изоляторы (рис. 3.9, а, б ) применяются для линий напряжением до 10 кВ и редко (для малых сечений) 35 кВ. Они крепятся к опорам при помощи крюков или штырей. Подвесные изоляторы (рис. 3.9, в) используются на ВЛ напряжением 35 кВ и выше. Они состоят из фарфоровой или стеклянной изолирующей части 1, шапки из ковкого чугуна 2, металлического стержня 3 и цементной связки 4.

Изоляторы собираются в гирлянды (рис. 3.9, г): поддерживающие на промежуточных опорах и натяж-ные - на анкерных. Количество изоляторов в гирлянде зависит от напряже-ния, типа и материала опор, загрязнённости атмосферы. Например, в линии 35 кВ - 3-4 изолятора, 220 кВ - 12-14; на линиях с деревянными опорами, обладающих повышенной грозоупорностью, количество изоляторов в гир-лянде на один меньше, чем на линиях с металлическими опорами; в натяж-ных гирляндах, работающих в наиболее тяжелых условиях, устанавливают на 1-2 изолятора больше, чем в поддерживающих.

Разработаны и проходят опытную промышленную проверку изоляторы с использованием полимерных материалов. Они представляют собой стерж-невой элемент из стеклопластика, защищённый покрытием с ребрами из фто-ропласта или кремнийорганической резины. Стержневые изоляторы по срав-нению с подвесными имеют меньший вес и стоимость, более высокую меха-ническую прочность, чем из закалённого стекла. Основная проблема - обес-печить возможность их длительной (более 30 лет) работы.

Линейная арматура предназначена для закрепления проводов к изоля-торам и тросов к опорам и содержит следующие основные элементы: зажи-мы, соединители, дистанционные распорки и др. (рис. 3.10).

Поддерживающие зажимы применяют для подвески и закрепления проводов ВЛ на промежуточных опорах с ограниченной жёсткостью заделки (рис. 3.10, а). На анкерных опорах для жёсткого крепления проводов исполь-зуют натяжные гирлянды и натяжные зажимы - натяжные и клиновые (рис. 3.10, б, в). Сцепная арматура (серьги, ушки, скобы, коромысла) предна-значена для подвески гирлянд на опорах. Поддерживающая гирлянда (рис. 3.10, г) закрепляется на траверсе промежуточной опоры с помощью серьги 1, вставляемой другой стороной в шапку верхнего подвесного изоля-тора 2. Ушко 3 используется для прикрепления к нижнему изолятору гирлян-ды поддерживающего зажима 4.

Дистанционные распорки (рис. 3.10, д), устанавливаемые в пролётах линий 330 кВ и выше с расщепленными фазами, предотвращают схлестывание, соударения и закручивание отдельных проводов фаз. Соединители при-меняются для соединения отдельных участков провода с помощью овальных или прессующих соединителей (рис. 3.10, е, ж ). В овальных соединителях провода либо скручиваются, либо обжимаются; в прессуемых соединителях, применяемых для соединения сталеалюминиевых проводов больших сече-ний, стальная и алюминиевые части опрессовываются отдельно.

Результатом развития техники передачи ЭЭ на дальние расстояния яв-ляются различные варианты компактных ЛЭП, характеризующиеся меньшим расстоянием между фазами и, как следствие, меньшими индуктивными со-противлениями и шириной трассы линии (рис. 3.11). При использовании опор «охватывающего типа» (рис. 3.11, а) уменьшение расстояния достигает-ся за счет расположения всех фазных расщепленных конструкций внутри «охватывающего портала», или по одну сторону от стойки опор (рис. 3.11, б). Сближение фаз обеспечивается с помощью междуфазных изоляционных рас-порок. Предложены различные варианты компактных линий с нетрадицион-ными схемами расположения проводов расщепленных фаз (рис. 3.11, в-и).

Кроме уменьшения ширины трассы на единицу передаваемой мощно-сти, компактные линии могут быть созданы для передачи повышенных мощ-ностей (до 8-10 ГВт); такие линии вызывают меньшую напряженность элек-трического поля на уровне земли и обладают рядом других технических дос-тоинств.

К компактным линиям относятся также управляемые самокомпенсирующиеся линии и управляемые линии с нетрадиционной конфигурацией расщепленных фаз. Они представляют собой двухцепные линии, в которых попарно сдвинуты одноименные фазы разных цепей. При этом к цепям под-водятся напряжения, сдвинутые на определенный угол. За счет режимного изменения с помощью специальных устройств угла фазового сдвига осуще-ствляется управление параметрами линий.

Как можно обозначит значение линий электропередач? Есть ли точное определение проводам, по которым передается электроэнергия? В межотраслевых правилах технической эксплуатации электроустановок потребителей есть точное определение. Итак, ЛЭП – это, во-первых, электрическая линия. Во-вторых, это участки проводов, которые выходят за пределы подстанций и электрических станций. В-третьих, основное назначение линий электропередач – это передача электрического тока на расстоянии.

По тем же правилам МПТЭЭП производится разделение ЛЭП на воздушные и кабельные. Но необходимо отметить, что по линиям электропередач производится также передача высокочастотных сигналов, которые используются для передачи телеметрических данных, для диспетчерского управления различными отраслями, для сигналов противоаварийной автоматики и релейной защиты. Как утверждает статистика, 60000 высокочастотных каналов сегодня проходят по линиям электропередач. Скажем прямо, показатель значительный.

Воздушные ЛЭП

Воздушные линии электропередач, их обычно обозначают буквами «ВЛ» – это устройства, которые располагаются на открытом воздухе. То есть, сами провода прокладываются по воздуху и закрепляются на специальной арматуре (кронштейны, изоляторы). При этом их установка может проводиться и по столбам, и по мостам, и по путепроводам. Не обязательно считать «ВЛ» те линии, которые проложены только по высоковольтным столбам.

Что входит в состав воздушных линий электропередач:

  • Основное – это провода.
  • Траверсы, с помощью которых создаются условия невозможности соприкосновения проводов с другими элементами опор.
  • Изоляторы.
  • Сами опоры.
  • Контур заземления.
  • Молниеотводчики.
  • Разрядники.

То есть, линия электропередач – это не просто провода и опоры, как видите, это достаточно внушительный список различных элементов, каждый из которых несет свои определенные нагрузки. Сюда же можно добавить оптоволоконные кабели, и вспомогательное к ним оборудование. Конечно, если по опорам ЛЭП проводятся высокочастотные каналы связи.

Строительство ЛЭП, а также ее проектирование, плюс конструктивные особенности опор определяются правилами устройства электроустановок, то есть ПУЭ, а также различными строительными правилами и нормами, то есть СНиП. Вообще, строительство линий электропередач – дело непростое и очень ответственное. Поэтому их возведением занимаются специализированные организации и компании, где в штате есть высококвалифицированные специалисты.

Классификация воздушных линий электропередач

Сами воздушные высоковольтные линии электропередач делятся на несколько классов.

По роду тока:

  • Переменного,
  • Постоянного.

В основе своей воздушные ВЛ служат для передачи переменного тока. Редко можно встретить второй вариант. Обычно он используется для питания сети контактной или связной для обеспечения связью несколько энергосистем, есть и другие виды.

По напряжению воздушные ЛЭП делятся по номиналу этого показателя. Для информации перечислим их:

  • для переменного тока: 0,4; 6; 10; 35; 110; 150; 220; 330; 400; 500; 750; 1150 киловольт (кВ);
  • для постоянного используется всего один вид напряжение – 400 кВ.

При этом линии электропередач напряжением до 1,0 кВ считаются низшего класса, от 1,0 до 35 кВ – среднего, от 110 до 220 кВ – высокого, от 330 до 500 кВ – сверхвысокого, выше 750 кВ ультравысокого. Необходимо отметить, что все эти группы отличаются друг от друга лишь требованиями к расчетным условиям и конструктивным особенностям. Во всем остальном – это обычные высоковольтные линии электропередач.


Напряжение ЛЭП соответствует их назначению.

  • Высоковольтная линия напряжением свыше 500 кВ считаются сверхдальними, они предназначаются для соединения отдельных энергосистем.
  • Высоковольтная линия напряжением 220, 330 кВ считаются магистральными. Их основное назначение – соединить между собой мощные электростанции, отдельные энергосистемы, а также электростанции внутри данных систем.
  • Воздушные ЛЭП напряжением 35-150 кВ устанавливаются между потребителями (большими предприятиями или населенными пунктами) и распределительными пунктами.
  • ВЛ до 20 кВ используются в качестве линий электропередач, которые непосредственно подводят электрический ток к потребителю.

Классификация ЛЭП по нейтрале

  • Трехфазные сети, в которых нейтраль не заземлена. Обычно такая схема используется в сетях напряжением 3-35 кВ, где протекают малые токи.
  • Трехфазные сети, в которых нейтраль заземлена через индуктивность. Это так называемый резонансно-заземленный тип. В таких ВЛ используется напряжение 3-35 кВ, в которых протекают токи большой величины.
  • Трехфазные сети, в которых нейтральная шина полностью заземлена (эффективно-заземленная). Этот режим работы нейтрали используется в ВЛ со средним и сверхвысоким напряжением. Обратите внимание, что в таких сетях необходимо использовать трансформаторы, а не автотрансформаторы, в которых нейтраль заземлена наглухо.
  • И, конечно, сети с глухозаземленной нейтралью. В таком режиме работают ВЛ напряжением ниже 1,0 кВ и выше 220 кВ.

К сожалению, существует и такое разделения линий электропередач, где учитывается эксплуатационное состояние всех элементов ЛЭП. Это ЛЭП в нормальном состоянии, где провода, опоры и другие составляющие находятся в приличном состоянии. В основном упор делается на качество проводов и тросов, они не должны быть оборваны. Аварийное состояние, где качество проводов и тросов оставляет желать лучшего. И монтажное состояние, когда производится ремонт или замена проводов, изоляторов, кронштейнов и других компонентов ЛЭП.


Элементы воздушной ЛЭП

Между специалистами всегда происходят разговоры, в которых применяются специальные термины, касающиеся линий электропередач. Непосвященному в тонкости сленга понять этот разговор достаточно сложно. Поэтому предлагаем расшифровку этих терминов.

  • Трасса – это ось прокладки ЛЭП, которая проходит по поверхности земли.
  • ПК – пикеты. По сути, это отрезки трассы ЛЭП. Их длина зависит от рельефа местности и от номинального напряжения трассы. Нулевой пикет – это начало трассы.
  • Строительство опоры обозначается центровым знаком. Это центр установки опоры.
  • Пикетаж – по сути, это простая установка пикетов.
  • Пролет – это расстояние между опорами, а точнее, между их центрами.
  • Стрела провеса – это дельта между самой низшей точкой провеса провода и строго натянутой линией между опорами.
  • Габарит провода – это опять-таки расстояние между самой низшей точкой провеса и самой высшей точкой пролегаемых под проводами инженерных сооружений.
  • Петля или шлейф. Это часть провода, которая соединяет на анкерной опоре провода соседних пролетов.

Кабельные ЛЭП

Итак, переходим к рассмотрению такого понятия, как кабельные линии электропередач. Начнем с того, что это не голые провода, которые используются в воздушных линиях электропередач, это закрытые в изоляцию кабели. Обычно кабельные ЛЭП представляют собой несколько линий, установленные рядом друг с другом в параллельном направлении. Длины кабеля для этого бывает недостаточно, поэтому между участками устанавливаются соединительные муфты. Кстати, нередко можно встретить кабельные линии электропередач с маслонаполнением, поэтому такие сети часто укомплектовываются специальной малонаполнительной аппаратурой и системой сигнализации, которая реагирует на давление масла внутри кабеля.

Если говорить о классификации кабельных линий, то они идентичны классификации линий воздушных. Отличительные особенности есть, но их не так много. В основном эти две категории отличаются между собой способом прокладки, а также конструктивными особенностями. К примеру, по типу прокладки кабельные ЛЭП делятся на подземные, подводные и по сооружениям.


Две первые позиции понятны, а что относится к позиции «по сооружениям»?

  • Кабельные туннели. Это специальные закрытые коридоры, в которых производится прокладка кабеля по установленным опорным конструкциям. В таких туннелях можно свободно ходить, проводя монтаж, ремонт и обслуживание электролинии.
  • Кабельные каналы. Чаще всего они являются заглубленными или частично заглубленными каналами. Их прокладка может производиться в земле, под напольным основанием, под перекрытиями. Это небольшие каналы, в которых ходить невозможно. Чтобы проверить или установить кабель, придется демонтировать перекрытие.
  • Кабельная шахта. Это вертикальный коридор с прямоугольным сечением. Шахта может быть проходной, то есть, с возможностью помещаться в нее человеку, для чего она снабжается лестницей. Или непроходной. В данном случае добраться до кабельной линии можно, только сняв одну из стенок сооружения.
  • Кабельный этаж. Это техническое пространство, обычно высотою 1,8 м, оснащенное снизу и сверху плитами перекрытия.
  • Укладывать кабельные линии электропередач можно и в зазор между плитами перекрытия и полом помещения.
  • Блок для кабеля – это сложное сооружение, состоящее из труб прокладки и нескольких колодцев.
  • Камера – это подземное сооружение, закрытое сверху железобетонной или плитой. В такой камере производится соединение муфтами участков кабельной ЛЭП.
  • Эстакада – это горизонтальное или наклонное сооружение открытого типа. Она может быть надземной или наземной, проходной или непроходной.
  • Галерея – это практически то же самое, что и эстакада, только закрытого типа.

И последняя классификация в кабельных ЛЭП – это тип изоляции. В принципе, основных видов два: твердая изоляция и жидкостная. К первой относятся изоляционные оплетки из полимеров (поливинилхлорид, сшитый полиэтилен, этилен-пропиленовая резина), а также другие виды, к примеру, промасленная бумага, резино-бумажная оплетка. К жидкостным изоляторам относится нефтяное масло. Есть и другие виды изоляции, к примеру, специальными газами или другими видами твердых материалов. Но их используют сегодня очень редко.

Заключение по теме

Разнообразие линий электропередач сводится к классификации двух основных видов: воздушных и кабельных. Оба варианта сегодня используются повсеместно, поэтому не стоит отделять один от другого и давать предпочтение одному перед другим. Конечно, строительство воздушных линий сопряжено с большими капиталовложениями, потому что прокладка трассы – это установка опор в основном металлических, которые имеют достаточно сложную конструкцию. При этом учитывается, какая сеть, под каким напряжением будет прокладываться.

Какие линии электропередач бывают

Сеть линий электропередач необходима для перемещения и распределения электрической энергии: от ее источников, между населенными пунктами и конечными объектами потребления. Данные линии отличаются большим разнообразием и разделяются:

  • по типу размещения проводов – воздушные (расположенные на открытом воздухе) и кабельные (закрытые в изоляцию);
  • по назначению – сверхдальние, магистральные, распределительные.

Воздушные и кабельные линии электропередач обладают определенной классификацией, которая зависят от потребителя, рода тока, мощности, используемых материалов.

Воздушные линии электропередач (ВЛ)


К ним относятся линии, которые прокладываются на открытом воздухе над землей с использованием различных опор. Разделение линий электропередач важно для их выбора и обслуживания.

Различают линии:

  • по роду перемещаемого тока – переменный и постоянный;
  • по уровню напряжения – низковольтные (до 1000 В) и высоковольтные (более 1000 В) линии электропередач;
  • по нейтрале – сети с глухозаземленной, изолированной, эффективно-заземленной нейтралью.

Переменный ток

Электрические линии, использующие для передачи переменный ток, внедряются российскими компаниями чаще всего. С их помощью происходит питание систем и перемещение энергии на различные расстояния.

Постоянный ток

Воздушные линии электропередач, обеспечивающие передачу постоянного тока, используются в России редко. Главная причина этого – высокая стоимость монтажа. Кроме опор, проводов и различных элементов для них требуется покупка дополнительного оборудования – выпрямителей и инверторов.

Поскольку большинство потребителей использует переменный ток, при обустройстве таких линий, приходится тратить дополнительный ресурс на преобразование энергии.

Устройство воздушных ЛЭП

Устройство воздушных линий электропередач включают в себя следующие элементы:

  • Системы опоры или электрические столбы . Они размещаются на земле или других поверхностях и могут быть анкерными (принимают основную нагрузку), промежуточными (обычно используются для поддержания проводов в пролетах), угловыми (размещаются в местах, где линии проводов меняют направление).
  • Провода. Имеют свои разновидности, могут быть выполнены из алюминия, меди.
  • Траверсы. Они крепятся на опоры линий и служат основой для монтажа проводов.
  • Изоляторы. С их помощью монтируются провода и изолируются друг от друга.
  • Системы заземления. Наличие такой защиты необходимо в соответствии с нормами ПУЭ (правилами устройства электроустановок).
  • Молниезащита. Ее использование обеспечивает защиту воздушной линии электропередач от напряжения, которое может возникнуть при попадании разряда.

Каждый элемент электрической сети играет важную роль, принимая на себя определенную нагрузку. В некоторых случаях в ней может использоваться дополнительное оборудование.

Кабельные линии электропередач


Кабельные линии электропередач под напряжением в отличие от воздушных не требуют большой свободной площади для размещения. Благодаря наличию изоляционный защиты они могут быть проложены: на территории различных предприятий, в населенных пунктах с плотной застройкой. Единственный недостаток в сравнении с ВЛ – более высокая стоимость монтажа.

Подземные и подводные

Закрытий способ позволяет размещать линии даже в самых сложных условиях – под землей и под водной поверхностью. Для их прокладки могут использоваться специальные тоннели или другие способы. При этом можно применять несколько кабелей, а также различные крепежные детали.

Около электрических сетей устанавливаются специальные охранные зоны. Согласно правилам ПУЭ они должны обеспечить безопасность и нормальные условия эксплуатации.

Прокладка по сооружениям

Прокладка высоковольтных линий электропередач с различным напряжением возможна внутри сооружений. К наиболее часто используемым конструкциям относятся:

  • Тоннели. Они представляют собой отдельные помещения, внутри которых кабели располагаются по стенам или на специальных конструкциях. Такие пространства хорошо защищены и обеспечивают легкий доступ к монтажу и обслуживанию линий.
  • Каналы. Это готовые конструкции из пластика, железобетонных плит и других материалов, внутри которых располагаются провода.
  • Этаж или шахта. Помещения, специально приспособленные для размещения ЛЭП и возможности нахождения там человека.
  • Эстакада. Они представляют собой открытые сооружения, которые прокладываются на земле, фундаменте, опорных конструкциях с прикрепленными внутри проводами. Закрытые эстакады называются галереями.
  • Размещение в свободном пространстве зданий – зазоры, место под полом.
  • Кабельные блок. Кабели прокладываются под землей в специальных трубах и выводятся на поверхность с помощью специальных пластиковых или бетонных колодцев.

Изоляция кабельных ЛЭП


Главным условием при выборе материалов для изоляции ЛЭП является то, что они не должны проводить ток. Обычно в устройстве кабельных линий электропередач используются следующие материалы:

  • резина синтетического или природного происхождения (она отличается хорошей гибкостью, поэтому линии из такого материала легко прокладывать даже в труднодоступных местах);
  • полиэтилен (достаточно устойчив к воздействию химической или другой агрессивной среды);
  • ПВХ (главным преимуществом такой изоляции является доступность, хотя материал по стойкости и различным защитным свойствам уступает другим);
  • фторопластовые (отличаются высокой устойчивостью к различным воздействиям);
  • материалы на бумажной основе (малоустойчивы к химическим и природным воздействиям, даже при наличии пропитки защитным составом).

Кроме традиционных твердых материалов для таких линий могут применяться жидкостные изоляторы, а также специальные газы.

Классификация по назначению

Еще одной характеристикой, по которой происходит классификация линий электропередач с учетом напряжения, является их назначение. ВЛ принято делить на: сверхдальние, магистральные, распределительные. Они различаются в зависимости от мощности, типа получателя и отправителя энергии. Это могут быть крупные станции или потребители – заводы, населенные пункты.

Сверхдальние

Основным назначением данных линий является связь между различными энергетическими системами. Напряжение в данных воздушных линиях начинается от 500 кВ.

Магистральные

Данный формат ЛЭП предполагает напряжение в сети 220 и 330 кВ. Магистральные линии обеспечивают передачу энергии от электростанций до пунктов распределения. Также они могут использоваться для связи различных электростанций.

Распределительные

К виду распределительных линий относятся сети под напряжением 35, 110 и 150 кВ. С их помощью происходит перемещение электрической энергии от распределительных сетей к населенным пунктам, а также крупным предприятиям. Линии с напряжением менее 20 кВ используются, чтобы обеспечить поставку энергии конечным потребителям, в том числе для подключения электричества к участку .

Строительство и ремонт линий электропередач


Прокладка сетей высоковольтных кабельных линий электропередач и ВЛ – необходимый способ обеспечения энергией любых объектов. С их помощью осуществляется передача электроэнергии на любые расстояния.

Строительство сетей любого назначения представляет собой сложный процесс, который включает в себя несколько этапов:

  • Обследование местности.
  • Проектирование линий, составление сметы, технической документации.
  • Подготовку территории, подбор и закупка материалов.
  • Сборку опорных элементов или подготовка к установке кабеля.
  • Монтаж или закладывание проводов, подвесных устройств, укрепление ЛЭП.
  • Благоустройство территории и подготовка линии к запуску.
  • Ввод в эксплуатацию, официальное оформление документации.

Для обеспечения эффективной работы линии требуется ее грамотное техническое обслуживание, своевременный ремонт и при необходимости реконструкция. Все подобные мероприятия должны проводиться в соответствии с ПУЭ (правилами технических установок).

Ремонт электрических линий делится на текущий и капитальный. Во время первого производится контроль за состоянием работы системы, выполняются работы по замене различных элементов. Капитальный ремонт предполагает проведение более серьезных работ, которые могут включать замену опор, перетяжку линий, замену целых участков. Все виды работ определяются в зависимости от состояния ЛЭП.

Сложные технические линии электропередач (ЛЭП), служат для доставки электроэнергии на большие расстояния. В масштабах государства они являются стратегически важными объектами, которые проектируются и возводятся в соответствии с СНиП и ПУЭ.

Классифицируются эти линейные участки на кабельные и воздушные ЛЭП, монтаж и прокладка которых требуют обязательного соблюдения расчетных условий и установки специальных конструкций.

Воздушные линии электропередачи

Рис.1 Воздушные высоковольтные ЛЭП

Наиболее распространенными считаются воздушные линии, прокладка которых происходит на открытом воздухе с помощью высоковольтных столбов, на которые провода закрепляются с помощью специальной арматуры (изоляторов и кронштейнов). Чаще всего – это стойки СК .

В состав ВЛ электропередач входят:

  • опоры для различных напряжений;
  • оголенные провода из алюминия или меди;
  • траверсы, обеспечивающие необходимое расстояние, исключающее возможность соприкосновения проводов с элементами опоры;
  • изоляторы;
  • контур заземления;
  • разрядники и молниеотвод.

Минимальная точка провисания ВЛ составляет: 5÷7 метров в ненаселенной местности и 6÷8 метров в населенных пунктах.

В качестве высоковольтных столбов используются:

  • металлические конструкции, которые эффективно используются в любых климатических зонах и с разными нагрузками. Они отличаются достаточной прочностью, надежностью и долговечностью. Представляют собой металлический каркас, элементы которого соединены с помощью болтовых соединений, которые облегчают доставку и монтаж опор на местах установки;
  • железобетонные опоры, являющиеся самым простым видом конструкций, которые имеют хорошие прочностные характеристики, просты в установке и проведении монтажа на них ВЛ. К недостаткам установки бетонных опор , относятся – определенное влияние на них ветровых нагрузок и характеристик грунтов;
  • деревянные опоры, которые являются самыми малозатратными в производстве и обладают отличными диэлектрическими характеристиками. Малый вес конструкций из дерева позволяет быстро доставлять их к месту монтажа и легко устанавливать. Недостатком этих опор ЛЭП являются невысокая механическая прочность, позволяющая устанавливать их только с определенной нагрузкой и подверженность процессам биологического разрушения (гниения материала).

Использование той или иной конструкции обуславливается величиной напряжения электрической сети. Полезным будет навык определять напряжение ЛЭП на внешнему виду .

Классифицируются ВЛ:

  1. по току – постоянному или переменному;
  2. по номиналам напряжений – для постоянного тока с напряжением 400 киловольт и переменного - 0.4÷1150 киловольт.

Кабельные ЛЭП

Рис.2 Кабельные линии подземного типа

В отличие от воздушных линий, кабельные имеют изоляцию и поэтому они более дорогие и надежные. Применяют этот вид проводов в местах, где монтаж воздушных линий невозможен – в городах и населенных пунктах с плотной застройкой, на территориях производственных предприятий.

Классифицируются кабельные ЛЭП:

  1. по напряжению – точно также как и воздушные линии;
  2. по типу изоляции – жидкостному и твердому. Первый тип – это нефтяное масло, а второй – оплетка кабеля, состоящая из полимеров, резины и промасленной бумаги.

Отличительными их особенностями является способ прокладки:

  • подземный;
  • подводный;
  • по сооружениям, которые защищают кабеля от атмосферных воздействий и обеспечивают высокую степень безопасности при эксплуатации.

Рис.3 Прокладка подводной ЛЭП

В отличие от первых двух способов прокладки кабельных ЛЭП, вариант «по сооружению» предусматривает создание:

  • кабельных туннелей, в которых силовые кабеля укладываются на специальные опорные конструкции, позволяющие проводить монтажные работы и обслуживание линий;
  • кабельных каналов, которые представляют собой заглубленные сооружения под полом зданий, в которых укладка кабельных линий происходит в земле;
  • кабельных шахт – вертикальных коридоров, имеющих прямоугольное сечение, которые обеспечивают возможность доступа к ЛЭП;
  • кабельных этажей, которые представляют собой сухое, техническое пространство с высотой около 1,8 м;
  • кабельных блоков, состоящих из труб и колодцев;
  • открытого типа эстакад - для горизонтальной или наклонной прокладки кабелей;
  • камер, используемых для укладки соединительных муфт участков ЛЭП;
  • галерей – тех же эстакад, только закрытого типа.

Заключение

Несмотря на то, что кабельные и воздушные линии электропередач используются повсеместно, оба варианта имеют свои особенности, которые должны быть учтены в проектной документации, определяющей

Воздушная линия электропередачи (ВЛ) – устройство, предназначенное для передачи или распределения электрической энергии по проводам с защитной изолирующей оболочкой (ВЛЗ) или неизолированным проводам (ВЛ), находящимся на открытом воздухе и прикрепленным с помощью траверс (кронштейнов), изоляторов и линейной арматуры к опорам или другим инженерным сооружениям (мостам, путепроводам). Главными элементами ВЛ являются:

  • провода;
  • защитные тросы;
  • опора, поддерживающая провода и торосы на определенной высоте над уровнем земли или воды;
  • изоляторы, изолирующие провода от тела опоры;
  • линейная арматура.

За начало и за конец воздушной линии принимают линейные порталы распределительных устройств. По конструктивному устройству ВЛ делятся на одноцепные и многоценные, как правило 2-цепные.

Обычно ВЛ состоит из трех фаз, поэтому опоры одноцепных ВЛ напряжением выше 1 кВ рассчитаны на подвеску трёх фазных проводов (одной цепи) (рис. 1), на опорах двухцепных ВЛ подвешивают шесть проводов (две параллельно идущие цепи). При необходимости над фазными проводами подвешивается один или два грозозащитных троса. На опорах ВЛ распределительной сети напряжением до 1 кВ подвешивается от 5 до 12 проводов для электроснабжения различных потребителей по одной ВЛ (наружное и внутреннее освещение, электросиловое хозяйство, бытовые нагрузки). ВЛ напряжением до 1 кВ с глухозаземлённой нейтралью помимо фазных снабжена нулевым проводом.

Рис. 1. Фрагменты ВЛ 220 кВ: а – одноцепной; б – двухцепной

Провода воздушных линий электропередачи в основном изготавливаются из алюминия и его сплавов, в некоторых случаях из меди и ее сплавов, выполняются из холоднотянутой проволоки, обладающей достаточной механической прочностью. Однако наибольшее распространение получили многопроволочные провода из двух металлов с хорошими механическими характеристиками и относительно невысокой стоимостью. К проводам такого типа относятся сталеалюминиевые провода с отношением площадей поперечного сечения алюминиевой и стальной части от 4,0 до 8,0. Примеры расположения фазных проводов и грозозащитных тросов показаны на рис. 2, а конструктивные параметры ВЛ стандартного ряда напряжений приведены в табл. 1.

Рис. 2. : а – треугольное; б – горизонтальное; в – шестиугольное «бочкой»; г – обратной «елкой»

Таблица 1. Конструктивные параметры воздушных линий

Номинальное

напряжение ВЛ, кВ

Расстояние между

фазными проводами, м

Длина

пролета, м

Высота Габарит
Менее 1 0,5 40 – 50 8 – 9 6 – 7
6 – 10 1,0 50 – 80 10 6 – 7
35 3 150 – 200 12 6 – 7
110 4 – 5 170 – 250 13 – 14 6 – 7
150 5,5 200 – 280 15 – 16 7 – 8
220 7 250 – 350 25 – 30 7 – 8
330 9 300 – 400 25 – 30 7,5 – 8
500 10 – 12 350 – 450 25 – 30 8
750 14 – 16 450 – 750 30 – 41 10 – 12
1150 12 – 19 33 – 54 14,5 – 17,5

Для всех приведенных вариантов расположения фазных проводов на опорах характерно несимметричное расположение проводов по отношению друг к другу. Соответственно это ведет к неодинаковому реактивному сопротивлению и проводимости разных фаз, обусловленных взаимной индуктивностью между проводами линии и как следствие к несимметрии фазных напряжений и падению напряжения.

Для того чтобы сделать емкость и индуктивность всех трех фаз цепи одинаковыми, на линии электропередачи применяют транспозицию проводов, т.е. взаимно меняют их расположение друг относительно друга, при этом каждый провод фазы проходит одну треть пути (рис. 3). Одно такое тройное перемещение называется циклом транспозиции.

Рис. 3. Схема полного цикла транспозиции участков воздушной линии электропередачи : 1, 2, 3 – фазные провода

Транспозицию фазных проводов воздушной линии электропередачи с неизолированными проводами применяют на напряжение 110 кВ и выше и при протяженности линии 100 км и больше. Один из вариантов монтажа проводов на транспозиционной опоре показан на рис. 4. Следует отметить, что транспозицию токопроводящих жил иногда применяют и в КЛ, кроме того современные технологии проектирования и сооружения ВЛ позволяют технически реализовать управление параметрами линии (управляемые самокомпенсирующиеся линии и компактные воздушные линии сверхвысокого напряжения).

Рис. 4.

Провода и защитные тросы ВЛ в определенных местах должны быть жестко закреплены на натяжных изоляторах анкерных опор (концевые опоры 1 и 7, устанавливаемые в начале и конце ВЛ, как это показано на рис. 5 и натянуты до заданного тяжения. Между анкерными опорами устанавливают промежуточные опоры, необходимые для поддержания проводов и тросов, при помощи поддерживающих гирлянд изоляторов с поддерживающими зажимами, на заданной высоте (опоры 2, 3, 6), устанавливаемые на прямом участке ВЛ; угловые (опоры 4 и 5), устанавливаемые на поворотах трассы ВЛ; переходные (опоры 2 и 3), устанавливаемые в пролете пересечения воздушной линией какого-либо естественного препятствия или инженерного сооружения, например, железной дороги или шоссе.

Рис. 5.

Расстояние между анкерными опорами называют анкерным пролетом воздушной линии электропередачи (рис. 6). Горизонтальное расстояние между точками крепления провода на соседних опорах называется длиной пролета L . Эскиз пролета ВЛ показан на рис. 7. Длину пролета выбирают в основном по экономическим соображениям, кроме переходных пролетов, учитывая, как высоту опор, так и провисание проводов и тросов, а также количество опор и изоляторов по всей длине ВЛ.

Рис. 6. : 1 – поддерживающая гирлянда изоляторов; 2 – натяжная гирлянда; 3 – промежуточная опора; 4 – анкерная опора

Наименьшее расстояние по вертикали от земли до провода при его наибольшем провисании называют габаритом линии до земли – h . Габарит линии должен выдерживаться для всех номинальных напряжений с учетом опасности перекрытия воздушного промежутка между фазными проводами и наиболее высокой точкой местности. Также необходимо учитывать экологические аспекты воздействия высоких напряженностей электромагнитного поля на живые организмы и растения.

Наибольшее отклонение фазного провода f п или грозозащитного троса f т от горизонтали под действием равномерно распределенной нагрузки от собственной массы, массы гололеда и давления ветра называют стрелой провеса. Для предотвращения схлёстывания проводов стрела провеса троса выполняется меньше стрелы провеса провода на 0,5 – 1,5 м.

Конструктивные элементы ВЛ, такие как фазные провода, тросы, гирлянды изоляторов обладают значительной массой поэтому силы действующие на одну опору достигает сотен тысяч ньютон (Н). Силы тяжения на провод от веса провода, веса натяжных гирлянд изоляторов и гололедных образований направлены по нормали вниз, а силы, обусловленные ветровым напором, по нормали в сторону от вектора ветрового потока, как это показано на рис. 7.

Рис. 7.

С целью уменьшения индуктивного сопротивления и увеличения пропускной способности ВЛ дальних передач используют различные варианты компактных ЛЭП, характерной особенностью которых является уменьшенное расстояние между фазными проводами. Компактные ЛЭП имеют более узкий пространственный коридор, меньший уровень напряженности электрического поля на уровне земли и позволяют технически реализовать управление параметрами линии (управляемые самокомпенсирующиеся линии и линии с нетрадиционной конфигурацией расщепленных фаз).

2. Кабельная линия электропередачи

Кабельная линия электропередачи (КЛ) состоит из одного или нескольких кабелей и кабельной арматуры для соединения кабелей и для присоединения кабелей к электрическим аппаратам или шинам распределительных устройств.

В отличие от ВЛ кабели прокладываются не только на открытом воздухе, но и внутри помещений (рис. 8), в земле и воде. Поэтому КЛ подвержены воздействию влаги, химической агрессивности воды и почвы, механическим повреждениям при проведении земляных работ и смещении грунта во время ливневых дождей и паводков. Конструкция кабеля и сооружений для прокладки кабеля должна предусматривать защиту от указанных воздействий.

Рис. 8.

По значению номинального напряжения кабели делятся на три группы: кабели низкого напряжения (до 1 кВ), кабели среднего напряжения (6…35 кВ), кабели высокого напряжения (110 кВ и выше). По роду тока различают кабели переменного и постоянного тока.

Силовые кабели выполняются одножильными, двухжильными, трехжильными, четырехжильными и пятижильными. Одножильными выполняются кабели высокого напряжения; двухжильными – кабели постоянного тока; трехжильными – кабели среднего напряжения.

Кабели низкого напряжения выполняются с количеством жил до пяти. Такие кабели могут иметь одну, две или три фазных жилы, а также нулевую рабочую жилу N и нулевую защитную жилу РЕ или совмещенную нулевую рабочую и защитную жилу PEN .

По материалу токопроводящих жил различают кабели с алюминиевыми и медными жилами. В силу дефицитности меди наибольшее распространение получили кабели с алюминиевыми жилами. В качестве изоляционного материала используется кабельная бумага, пропитанная маслоканифольным составом, пластмасса и резина. Различают кабели с нормальной пропиткой, обедненной пропиткой и пропиткой нестекающим составом. Кабели с обедненной или нестекающей пропиткой прокладывают по трассе с большим перепадом высот или по вертикальным участкам трассы.

Кабели высокого напряжения выполняются маслонаполненными или газонаполненными. В этих кабелях бумажная изоляция заполняется маслом или газом под давлением.

Защита изоляции от высыхания и попадания воздуха и влаги обеспечивается наложением на изоляцию герметичной оболочки. Защита кабеля от возможных механических повреждений обеспечивается броней. Для защиты от агрессивности внешней среды служит наружный защитный покров.

При изучении кабельных линий целесообразно отметить сверхпроводящие кабели для линий электропередачи в основу конструкции которых положено явление сверхпроводимости. В упрощенном виде явление сверхпроводимости в металлах можно представить следующим образом. Между электронами как между одноименно заряженными частицами действуют кулоновские силы отталкивания. Однако при сверхнизких температурах для сверхпроводящих материалов (а это 27 чистых металлов и большое количество специальных сплавов и соединений) характер взаимодействия электронов между собой и с атомной решеткой существенно видоизменяется. В результате становится возможным притягивание электронов и образование так называемых электронных (куперовских) пар. Возникновение этих пар, их увеличение, образование «конденсата» электронных пар и объясняет появление сверхпроводимости. С повышением температуры часть электронов термически возбуждается и переходит в одиночное состояние. При некоторой так называемой критической температуре все электроны становятся нормальными и состояние сверхпроводимости исчезает. То же происходит и при повышении напряженности магнитного по ля . Критические температуры сверхпроводящих сплавов и соединений, используемых в технике, составляют 10 - 18 К, т.е. от –263 до –255°С.

Первые проекты, экспериментальные модели и опытные образцы таких кабелей в гибких гофрированных криостатирующих оболочках были реализованы лишь в 70-80-е годы XX века. В качестве сверхпроводника использовались ленты на основе интерметаллического соединения ниобия с оловом, охлаждаемые жидким гелием.

В 1986 г. было открыто явление высокотемпературной сверхпроводимости , и уже в начале 1987 г. были получены проводники такого рода, представляющие собой керамические материалы, критическая температура которых была повышена до 90 К. Примерный состав первого высокотемпературного сверхпроводника YBa 2 Cu 3 O 7–d (d < 0,2). Такой сверхпроводник представляет собой неупорядоченную систему мелких кристаллов, имеющих размер от 1 до 10 мкм, находящихся в слабом электрическом контакте друг с другом. К концу XX века были начаты и к этому времени достаточно продвинуты работы по созданию сверхпроводящих кабелей на основе высокотемпературных сверхпроводников. Такие кабели принципиально отличаются от своих предшественников. Жидкий азот, применяемый для охлаждения, на несколько порядков дешевле гелия, а его запасы практически безграничны. Очень важным является то, что жидкий азот при рабочих давлениях 0,8 - 1 МПа является прекрасным диэлектриком, превосходящим по своим свойствам пропиточные составы, используемые в традиционных кабелях.

Технико-экономические исследования показывают, что высокотемпературные сверхпроводящие кабели будут более эффективными по сравнению с другими видами электропередачи уже при передаваемой мощности более 0,4 - 0,6 ГВ·А в зависимости от реального объекта применения. Высокотемпературные сверхпроводящие кабели предполагается в будущем использовать в энергетике в качестве токопроводов на электростанциях мощностью свыше 0,5 ГВт, а также глубоких вводов в мегаполисы и крупные энергоемкие комплексы. При этом необходимо реально оценивать экономические аспекты и полный комплекс работ по обеспечению надежности таких кабелей в эксплуатации.

Однако следует отметить, что при строительстве новых и реконструкции старых КЛ необходимо руководствоваться положениями ПАО «Россети», согласно которым на КЛ запрещено применять:

  • силовые кабели, не отвечающие действующим требованиям по пожарной безопасности и выделяющие большие концентрации токсичных продуктов при горении;
  • кабели с бумажно-масляной изоляцией и маслонаполненные;
  • кабели, изготовленные по технологии силанольной сшивки (силанольносшиваемые композиции содержат привитые органофункциональные силановые группы, и сшивание молекулярной цепи полиэтилена (ПЭ), приводящее к образованию пространственной структуры, в этом случае происходит за счет связи кремний-кислород-кремний (Si-O-Si), а не углерод-углерод (С-С), как это имеет место при пероксидном сшивании).

Кабельную продукцию в зависимости от конструкций подразделяют на кабели , провода и шнуры .

Кабель – полностью готовое к применению заводское электротехническое изделие, состоящее из одной или более изолированных токопроводящих жил (проводников), заключенных, как правило, в металлическую или неметаллическую оболочку, поверх которой в зависимости от условий прокладки и эксплуатации может иметься соответствующий защитный покров, в состав которого может входить броня. Силовые кабели в зависимости от класса напряжения имеют от одной до пяти алюминиевых или медных жил сечением от 1,5 до 2000 мм 2 , из них сечением до 16 мм 2 – однопроволочные, свыше – многопроволочные.

Провод – одна неизолированная или одна и более изолированных жил, поверх которых в зависимости от условий прокладки и эксплуатации может иметься неметаллическая оболочка, обмотка и (или) оплетка волокнистыми материалами или проволокой.

Шнур – две или более изолированных, или особо гибких жил сечением до 1,5 мм 2 , скрученных или уложенных параллельно, поверх которых в зависимости от условий прокладки и эксплуатации могут быть наложены неметаллическая оболочка и защитные покрытия.