Уравнение прямой, проходящей через две точки. Прямая линия. Уравнение прямой

Уравнение прямой, проходящей через данную точку в данном направлении. Уравнение прямой, проходящей через две данные точки. Угол между двумя прямыми. Условие параллельности и перпендикулярности двух прямых. Определение точки пересечения двух прямых

1. Уравнение прямой, проходящей через данную точку A (x 1 , y 1) в данном направлении, определяемом угловым коэффициентом k ,

y - y 1 = k (x - x 1). (1)

Это уравнение определяет пучок прямых, проходящих через точку A (x 1 , y 1), которая называется центром пучка.

2. Уравнение прямой, проходящей через две точки: A (x 1 , y 1) и B (x 2 , y 2), записывается так:

Угловой коэффициент прямой, проходящей через две данные точки, определяется по формуле

3. Углом между прямыми A и B называется угол, на который надо повернуть первую прямую A вокруг точки пересечения этих прямых против движения часовой стрелки до совпадения ее со второй прямой B . Если две прямые заданы уравнениями с угловым коэффициентом

y = k 1 x + B 1 ,

Пусть даны две точки М (Х 1 ,У 1) и N (Х 2, y 2). Найдем уравнение прямой, проходящей через эти точки.

Так как эта прямая проходит через точку М , то согласно формуле (1.13) ее уравнение имеет вид

У Y 1 = K (X – x 1),

Где K – неизвестный угловой коэффициент.

Значение этого коэффициента определим из того условия, что искомая прямая проходит через точку N , а значит, ее координаты удовлетворяют уравнению (1.13)

Y 2 – Y 1 = K (X 2 – X 1),

Отсюда можно найти угловой коэффициент этой прямой:

,

Или после преобразования

(1.14)

Формула (1.14) определяет Уравнение прямой, проходящей через две точки М (X 1, Y 1) и N (X 2, Y 2).

В частном случае, когда точки M (A , 0), N (0, B ), А ¹ 0, B ¹ 0, лежат на осях координат, уравнение (1.14) примет более простой вид

Уравнение (1.15) называется Уравнением прямой в отрезках , здесь А и B обозначают отрезки, отсекаемые прямой на осях (рисунок 1.6).

Рисунок 1.6

Пример 1.10. Составить уравнение прямой, проходящей через точки М (1, 2) и B (3, –1).

. Согласно (1.14) уравнение искомой прямой имеет вид

2(Y – 2) = -3(X – 1).

Перенося все члены в левую часть, окончательно получаем искомое уравнение

3X + 2Y – 7 = 0.

Пример 1.11. Составить уравнение прямой, проходящей через точку М (2, 1) и точку пересечения прямых X + Y – 1 = 0, Х – у + 2 = 0.

. Координаты точки пересечения прямых найдем, решив совместно данные уравнения

Если сложить почленно эти уравнения, получим 2X + 1 = 0, откуда . Подставив найденное значение в любое уравнение, найдем значение ординаты У :

Теперь напишем уравнение прямой, проходящей через точки (2, 1) и :

или .

Отсюда или –5(Y – 1) = X – 2.

Окончательно получаем уравнение искомой прямой в виде Х + 5Y – 7 = 0.

Пример 1.12. Найти уравнение прямой, проходящей через точки M (2,1) и N (2,3).

Используя формулу (1.14), получим уравнение

Оно не имеет смысла, так как второй знаменатель равен нулю. Из условия задачи видно, что абсциссы обеих точек имеют одно и то же значение. Значит, искомая прямая параллельна оси ОY и ее уравнение имеет вид: x = 2.

Замечание . Если при записи уравнения прямой по формуле (1.14) один из знаменателей окажется равным нулю, то искомое уравнение можно получить, приравняв к нулю соответствующий числитель.

Рассмотрим другие способы задания прямой на плоскости.

1. Пусть ненулевой вектор перпендикулярен данной прямой L , а точка M 0(X 0, Y 0) лежит на этой прямой (рисунок 1.7).

Рисунок 1.7

Обозначим М (X , Y ) произвольную точку на прямой L . Векторы и Ортогональны. Используя условия ортогональности этих векторов, получим или А (X X 0) + B (Y Y 0) = 0.

Мы получили уравнение прямой, проходящей через точку M 0 перпендикулярно вектору . Этот вектор называется Вектором нормали к прямой L . Полученное уравнение можно переписать в виде

Ах + Ву + С = 0, где С = –(А X 0 + By 0), (1.16),

Где А и В – координаты вектора нормали.

Получим общее уравнение прямой в параметрическом виде.

2. Прямую на плоскости можно задать так: пусть ненулевой вектор параллелен данной прямой L и точка M 0(X 0, Y 0) лежит на этой прямой. Вновь возьмем произвольную точку М (Х , y) на прямой (рисунок 1.8).

Рисунок 1.8

Векторы и коллинеарны.

Запишем условие коллинеарности этих векторов: , где T – произвольное число, называемое параметром. Распишем это равенство в координатах:

Эти уравнения называются Параметрическими уравнениями Прямой . Исключим из этих уравнений параметр T :

Эти уравнения иначе можно записать в виде

. (1.18)

Полученное уравнение называют Каноническим уравнением прямой . Вектор называют Направляющим вектором прямой .

Замечание . Легко видеть, что если – вектор нормали к прямой L , то ее направляющим вектором может быть вектор , так как , т. е. .

Пример 1.13. Написать уравнение прямой, проходящей через точку M 0(1, 1) параллельно прямой 3Х + 2У – 8 = 0.

Решение . Вектор является вектором нормали к заданной и искомой прямым. Воспользуемся уравнением прямой, проходящей через точку M 0 с заданным вектором нормали 3(Х –1) + 2(У – 1) = 0 или 3Х + – 5 = 0. Получили уравнение искомой прямой.

Уравнение прямой, проходящей через т.у А(ха; уа) и имеющей угловой коэффициент k, записывается в виде

у – уа=k (x – xa). (5)

Уравнение прямой, проходящей через две точки т. А (х 1 ; у 1) и т.В (х 2 ; у 2) , имеет вид

Если точки А и В определяют прямую, параллельную оси Ох (у 1 = у 2) или оси Оу (х 1 = х 2), то уравнение такой прямой записывается соответственно в виде:

у = у 1 или х = х 1 (7)

Нормальное уравнение прямой

Пусть дана прямая С, проходящая через данную точку Мо(Хо; Уо) и перпендикулярная вектору (А;В). Любой вектор , перпендикулярный данной прямой , называется ее нормальным вектором. Выберем на прямой произвольную т. М(х;у). Тогда , а значит их скалярное произведение . Это равенство можно записать в координатах

А(х-х о)+В(у-у о)=0 (8)

Уравнение (8) называется нормальным уравнением прямой .

Параметрическое и каноническое уравнения прямой

Пусть прямая l задана начальной точкой М 0 (х 0 ; у 0) и направляющим вектором (а 1 ;а 2 ),. Пусть т. М(х; у) – любая точка, лежащая на прямой l . Тогда вектор коллинеарен вектору . Следовательно, = . Записывая это уравнение в координатах, получаем параметрическое уравнение прямой

Исключим параметр t из уравнения (9). Это возможно, так как вектор , и потому хотя бы одна из его координат отлична от нуля.

Пусть и , тогда , и, следовательно,

Уравнение (10) называется каноническим уравнением прямой с направляющим вектором

=(а 1 ; а 2). Если а 1 =0 и , то уравнения (9) примут вид

Этими уравнениями задается прямая, параллельная оси, Оу и проходящая через точку

М 0 (х 0 ; у 0).

х=х 0 (11)

Если , , то уравнения (9) примут вид

Этими уравнениями задается прямая, параллельная оси Ох и проходящая через точку

М 0 (х 0 ; у 0). Каноническое уравнение такой прямой имеет вид

у=у 0 (12)

Угол между прямыми. Условие параллельности и перпендикулярности двух

Прямых

Пусть даны две прямые, заданные общими уравнениями:

и

Тогда угол φ между ними определяется по формуле:

(13)

Условие параллельности 2-х прямых: (14)

Условие перпендикулярности 2-х прямых: (15)

Условие параллельности в этом случае имеет вид: (17)

Условие перпендикулярности прямых: (18)

Если две прямые заданы каноническими уравнениями:

и

то угол φ между этими прямыми определяется по формуле:

(19)

Условие параллельности прямых: (20)

Условие перпендикулярности прямых: (21)



Расстояние от точки до прямой

Расстояние d от точки М(х 1 ; у 1) до прямой Ax+By+C=0 вычисляется по формуле

(22)

Пример по выполнению практической работы

Пример 1. Построить прямую 3х– 2у +6=0.

Решение:Для построения прямой достаточно знать какие-либо две её точки, например, точки её пересечения с осями координат. Точку А пересечения прямой с осью Ох можно получить, если в уравнении прямой принять у=0.Тогда имеем 3х +6=0, т.е. х =-2. Таким образом, А (–2;0).

Тогда В пересечения прямой с осью Оу имеет абсциссу х =0; следовательно, ордината точки В находится из уравнения –2у+ 6=0, т.е. у=3. Таким образом, В (0;3).

Пример 2. Составить уравнение прямой, которая отсекает на отрицательной полуплоскости Оу отрезок, равный 2 единицам, и образует с осью Ох угол φ =30˚.

Решение: Прямая пересекает ось Оу в точке В (0;–2) и имеет угловой коэффициент k =tg φ= = . Полагая в уравнении (2) k = и b = –2, получим искомое уравнение

Или .

Пример 3. А (–1; 2) и

В (0;–3). (указание : угловой коэффициент прямой находится по формуле (3))

Решение: .Отсюда имеем . Подставив в это уравнение координаты т.В, получим: , т.е. начальная ордината b = –3 . Тогда получим уравнение .

Пример 4. Общее уравнение прямой 2х – 3у – 6 = 0 привести к уравнению в отрезках.

Решение: запишем данное уравнение в виде 2х – 3у =6 и разделим обе его части на свободный член: . Это и есть уравнение данной прямой в отрезках.

Пример 5. Через точку А (1;2) провести прямую, отсекающую на положительных полуосях координат равные отрезки.

Решение: Пусть уравнение искомой прямой имеет вид По условию а =b . Следовательно, уравнение принимает вид х + у = а . Так как точка А (1; 2) принадлежит этой прямой, значит ее координаты удовлетворяют уравнению х + у = а ; т.е. 1 + 2 = а , откуда а = 3. Итак, искомое уравнение записывается следующим образом: х + у = 3, или х + у – 3 = 0.

Пример 6. Для прямой написать уравнение в отрезках. Вычислить площадь треугольника, образованного этой прямой и осями координат.



Решение: Преобразуем данное уравнение следующим образом: , или .

В результате получим уравнение , которое и является уравнением данной прямой в отрезках. Треугольник, образованный данной прямой и осями координат, является прямоугольным треугольником с катетами, равными 4 и 3, поэтому его площадь равна S= (кв. ед.)

Пример 7. Составить уравнение прямой, проходящий через точку (–2; 5) и образующей с осью Ох угол 45º.

Решение: Угловой коэффициент искомой прямой k = tg 45º = 1. Поэтому, воспользовавшись уравнением (5), получаем у – 5 = x – (–2), или х – у + 7 = 0.

Пример 8. Составить уравнение прямой, проходящей через точки А (–3; 5)и В(7; –2).

Решение: Воспользуемся уравнением (6):

, или , откуда 7х + 10у – 29 = 0.

Пример 9. Проверить, лежат ли точки А (5; 2), В (3; 1) и С (–1; –1) на одной прямой.

Решение: Составим уравнение прямой, проходящей через точки А и С :

, или

Подставляя в это уравнение координаты точки В (хВ = 3 и у В = 1), получим (3–5) / (–6)= = (1–2) / (–3), т.е. получаем верное равенство. Т. о., координаты точки В удовлетворяют уравнению прямой (АС ), т.е. .

Пример 10: Составить уравнение прямой, проходящую через т. А(2;-3).

Перпендикулярную =(-1;5)

Решение: Пользуясь формулой (8), находим уравнение данной прямой -1(х-2)+5(у+3)=0,

или окончательно, х – 5 у - 17=0.

Пример 11 : Даны точки М 1 (2;-1) и М 2 (4; 5). Написать уравнение прямой, проходящей через точку М 1 перпендикулярно вектору Решение: Нормальный вектор искомой прямой имеет координаты (2;6), следовательно по формуле (8) получим уравнение 2(х-2)+6(у+1)=0 или х+3у +1=0.

Пример 12 : и .

Решение: ; .

Пример 13:

Решение: а) ;

Пример 14: Вычислить угол между прямыми

Решение:

Пример 15: Выяснить взаимное расположение прямых:

Решение:

Пример 16: найти угол между прямыми и .

Решение: .

Пример 17: выяснить взаимное расположение прямых:

Решение:а) - прямые параллельны;

б) - значит, прямые перпендикулярны.

Пример 18: Вычислить расстояние от точки М(6; 8) до прямой

Решение: по формуле (22) получим: .

Задания для практического занятия:

Вариант 1

1. Привести общее уравнение прямой 2x+3y-6=0 к уравнению в отрезках и вычислить площадь треугольника, отсекаемого этой прямой от соответствующего координатного угла;

2. В ∆ABC вершины имеют координаты точки А (-3;4), точки В (-4;-3), точки С (8;1). Составить уравнения стороны (AB), высоты (ВК) и медианы (CМ);

3. Вычислить угловой коэффициент прямой, проходящей через точку М 0 (-2;4) и параллельной вектору (6;-1);

4. Вычислить угол между прямыми

4. Вычислить угол между прямыми:

а) 2x - 3y + 7 = 0 и 3x - y + 5 = 0 ; б) и y = 2x – 4;

5.Определить взаимное расположение 2-х прямых и ;

, если известны координаты концов отрезка т.А(18;8) и т.В(-2; -6).

Вариант 3

1. Привести общее уравнение прямой 4x-5y+20=0 к уравнению в отрезках и вычислить площадь треугольника, отсекаемого этой прямой от соответствующего координатного угла;

2. В ∆ABC вершины имеют координаты точки А (3;-2), точки В (7;3), точки

С (0;8). Составить уравнения стороны (AB), высоты (ВК) и медианы (CМ);

3. Вычислить угловой коэффициент прямой, проходящей через точку M 0 (-1;-2) и

параллельной вектору (3;-5);

4. Вычислить угол между прямыми

а) 3x + y - 7 = 0 и x - y + 4 = 0; б) и ;

5. Определить взаимное расположение 2-х прямых и y = 5x + 3;

6. Вычислить расстояние от середины отрезка АВ до прямой , если известны координаты концов отрезка т.А(4;-3) и т.В(-6; 5).

Вариант 4

1. Привести общее уравнение прямой 12x-5y+60=0 к уравнению в отрезках и вычислить длину отрезка, который отсекается от этой прямой соответствующим координатным углом;

2. В ∆ABC вершины имеют координаты точки А (0;-2), точки В (3;6), точки С (1;-4). Составить уравнения стороны (AB), высоты (ВК) и медианы (CМ);

3. Вычислить угловой коэффициент прямой, проходящей через точку M 0 (4;4) и параллельной вектору (-2;7);

4.Вычислить угол между прямыми

а) x +4 y + 8 = 0 и 7x - 3y + 5 = 0; б) и ;

5. Определить взаимное расположение 2-х прямых и ;

6. Вычислить расстояние от середины отрезка АВ до прямой , если известны координаты концов отрезка т.А(-4; 8) и т.В(0; 4).

Контрольные вопросы

1. Назовите уравнения прямой на плоскости, когда известны точка, через которую она проходит и ее направляющий вектор;

2. Какой вид имеет нормальное, общее уравнения прямой на плоскости;

3. Назовите уравнение прямой, проходящей через две точки, уравнение прямой в отрезках, уравнение прямой с угловым коэффициентом;

4. Перечислите формулы для вычисления угла между прямыми, заданными уравнениями с угловым коэффициентом. Сформулируйте условия параллельности и перпендикулярности двух прямых.

5. Как найти расстояние от точки до прямой?

Уравнение прямой проходящей через две точки. В статье " " я обещал вам разобрать второй способ решения представленных задач на нахождение производной, при данном графике функции и касательной к этому графику. Этот способ мы разберём в , не пропустите! Почему в следующей?

Дело в том, что там будет использоваться формула уравнения прямой. Конечно, можно было бы просто показать данную формулу и посоветовать вам её выучить. Но лучше объяснить – от куда она исходит (как выводится). Это необходимо! Если вы её забудете, то быстро восстановить её не представит труда. Ниже подробно всё изложено. Итак, у нас на координатной плоскости имеется две точки А (х 1 ;у 1) и В(х 2 ;у 2), через указанные точки проведена прямая:

Вот сама формула прямой:


*То есть при подстановке конкретных координат точек мы получим уравнение вида y=kx+b.

**Если данную формулу просто «зазубрить», то имеется большая вероятность запутаться с индексами при х . Кроме того, индексы могут обозначаться по разному, например:

Поэтому-то и важно понимать смысл.

Теперь вывод этой формулы. Всё очень просто!


Треугольники АВЕ и ACF подобны по острому углу (первый признак подобия прямоугольных треугольников). Из этого следует, что отношения соответственных элементов равны, то есть:

Теперь просто выражаем данные отрезки через разность координат точек:

Конечно, не будет никакой ошибки если вы запишите отношения элементов в другом порядке (главное соблюдать соответствие):

В результате получится одно и тоже уравнение прямой. Это всё!

То есть, как бы не были обозначены сами точки (и их координаты), понимая данную формулу вы всегда найдёте уравнение прямой.

Формулу можно вывести используя свойства векторов, но принцип вывода будет тот же, так как речь будет идти о пропорциональности их координат. В этом случае работает всё то же подобие прямоугольных треугольников. На мой взгляд описанный выше вывод более понятнее)).

Посмотреть вывод через координаты векторов >>>

Пусть на координатной плоскости построена прямая, проходящая через две заданные точки А(х 1 ;у 1) и В(х 2 ;у 2). Отметим на прямой произвольную точку С с координатами (x ; y ). Также обозначим два вектора:


Известно, что у векторов лежащих на параллельных прямых (либо на одной прямой), их соответствующие координаты пропорциональны, то есть:

— записываем равенство отношений соответствующих координат:

Рассмотрим пример:

Найти уравнение прямой, проходящей через две точки с координатами (2;5) и (7:3).

Можно даже не строить саму прямую. Применяем формулу:

Важно, чтобы вы уловили соответствие, при составлении соотношения. Вы не ошибётесь, если запишите:

Ответ: у=-2/5x+29/5 иди у=-0,4x+5,8

Для того, чтобы убедится, что полученное уравнение найдено верно, обязательно делайте проверку — подставьте в него координаты данных в условии точек. Должны получится верные равенства.

На этом всё. Надеюсь, материал был вам полезен.

С уважением, Александр.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Прямая, проходящая через точку K(x 0 ; y 0) и параллельная прямой y = kx + a находится по формуле:

y - y 0 = k(x - x 0) (1)

Где k - угловой коэффициент прямой.

Альтернативная формула:
Прямая, проходящая через точку M 1 (x 1 ; y 1) и параллельная прямой Ax+By+C=0 , представляется уравнением

A(x-x 1)+B(y-y 1)=0 . (2)

Составить уравнение прямой, проходящей через точку K(;) параллельно прямой y = x + .
Пример №1 . Составить уравнение прямой, проходящей через точку M 0 (-2,1) и при этом:
а) параллельно прямой 2x+3y -7 = 0;
б) перпендикулярно прямой 2x+3y -7 = 0.
Решение . Представим уравнение с угловым коэффициентом в виде y = kx + a . Для этого перенесем все значения кроме y в правую часть: 3y = -2x + 7 . Затем разделим правую часть на коэффициент 3 . Получим: y = -2/3x + 7/3
Найдем уравнение NK, проходящее через точку K(-2;1), параллельно прямой y = -2 / 3 x + 7 / 3
Подставляя x 0 = -2, k = -2 / 3 , y 0 = 1 получим:
y-1 = -2 / 3 (x-(-2))
или
y = -2 / 3 x - 1 / 3 или 3y + 2x +1 = 0

Пример №2 . Написать уравнение прямой, параллельной прямой 2x + 5y = 0 и образующей вместе с осями координат треугольник, площадь которого равна 5.
Решение . Так как прямые параллельны, то уравнение искомой прямой 2x + 5y + C = 0. Площадь прямоугольного треугольника , где a и b его катеты. Найдем точки пересечения искомой прямой с осями координат:
;
.
Итак, A(-C/2,0), B(0,-C/5). Подставим в формулу для площади: . Получаем два решения: 2x + 5y + 10 = 0 и 2x + 5y – 10 = 0 .

Пример №3 . Составить уравнение прямой, проходящей через точку (-2; 5) и параллельной прямой 5x-7y-4=0 .
Решение. Данную прямую можно представить уравнением y = 5 / 7 x – 4 / 7 (здесь a = 5 / 7). Уравнение искомой прямой есть y – 5 = 5 / 7 (x – (-2)), т.е. 7(y-5)=5(x+2) или 5x-7y+45=0 .

Пример №4 . Решив пример 3 (A=5, B=-7) по формуле (2), найдем 5(x+2)-7(y-5)=0.

Пример №5 . Составить уравнение прямой, проходящей через точку (-2;5) и параллельной прямой 7x+10=0.
Решение. Здесь A=7, B=0. Формула (2) дает 7(x+2)=0, т.е. x+2=0. Формула (1) неприменима, так как данное уравнение нельзя разрешить относительно y (данная прямая параллельна оси ординат).