Расчёт системы звукового оповещения. Выбор и расчёт акустических систем оповещения Расчет речевых оповещателей для актового зала

В соответствии с вступившими в силу в 2003г. новыми нормами пожарной безопасности, при проектировании требуется обеспечивать заданные уровни звука. В документе имеется ссылка на методику измерения уровня звука, но нет никаких ссылок на то, как правильно рассчитать необходимое количество и мощность громкоговорителей .

Попробуем расписать порядок расчета оповещения по шагам.

1. Необходимо определить количество громкоговорителей для обеспечения равномерного распределения звука.

  • рупорный..............................................30-45 о
  • прожекторный.......................................30-45 о
  • настенный..............................................75-90 о
  • потолочный............................................80-90 о

Также, по опыту установки, можно считать, что расставлять потолочные громкоговорители допускается через расстояние, равное высоте потолка (при этом равномерность звука получится довольно посредственная, но нормам НПБ удволетворять будет. Если требуется равномерное озвучивание, то устанавливать придется через "высота потолка - рост человека"). Настенные громкоговорители устанавливаются через расстояние, равное ширине коридора (комнаты). А рупорные и прожекторные расставляют так, чтобы места скопления людей попали в диаграмму направленности. При установке настенных и рупорных громкоговорителей требуется придерживаться правила если требуется установить несколько грмокоговорителей в на одной площади, лучше установить их в центре и направить в разные стороны, чем ставить их на стенах и направлять к центру. Разборчивость и качество в последнем случае будут значительно хуже.

2. Определить уровень шума в помещении. Для этого его можно измерить или воспользоваться таблицей с примерными уровнями, для различных типов помещений.


3. Уровень трансляции должен превышать уровень шума на:

  • для фоновой музыки..................................на 5-6дБ
  • для аварийного оповещения.....................на 7-10дБ.
  • для качественной музыки...........................на 15-20дБ

4. Для учета ослабления уровня звука от расстояния (в пределах диаграммы направленности) можно воспользоваться таблицей:


5. Для учета увеличения уровня звука в зависимости от подводимой мощности можно воспользоваться таблицей:

6. Для рассчета уровня звукового давления на требуемом расстоянии можно воспользоваться упрощенной формулой:

SPL (Дб) =SPL паспортное - SPL ослабления + SPL увеличения

SPL (Дб) - уровень на требуемом расстоянии в диаграмме направленности

SPL паспортное - уровень звукового давления по паспорту на расстоянии в 1м (дБ/Вт/м)

SPL ослабления - уровень ослабления в зависимости от расстояния (см. таблицу)

SPL увеличения - - уровень увеличения в зависимости от подводимой мощности (см. таблицу)

Из приведенной выше формулы легко можно вычислить требуемую мощность для отдельно взятого громкоговорителя. Просуммировав мощности громкоговорителей можно вычислить суммарную мощность усилителя. Мощность усилителя рекомендуется выбирать с 20% запасом по мощности. При эксплуатации системы Вы сможете убедится в этом.

Например: есть торговое помещение размерами 20х30м с высотой потолков 3м. Требуется его озвучить фоновой музыкой, но с учетом возможности аварийного оповещения.

Для равномерного озвучивания потребуется 20:3-1 = 5 рядов по 30:3-1=9 шт. итого 45 шт.

Уровень звука на расстоянии 1, 5 м от громкоговорителя (высота потолка - рост самого низкого человека) должен быть не менее 63+7=70 дБ. Следовательно, если воспользоваться громкоговорителями АРТ-01 (Inter-M) мощностью 1 Вт, (по паспорту уровень звукового давления на расстоянии 1 м у них составляет 90 дБ.), формула приобретет вид:

SPL (Уровень звукового давления) = 90-3+0 =87 дБ. Что больше чем 70. Так, что данные громкоговорители подходят для озвучивания данного помещения. И в принципе, если необходимо только аварийное оповещение, то количество может быть еще меньше.(можно пересчитать самостоятельно).

Если-же Вам совсем не хочется утруждать себя "сложными" математическими расчетами, то всегда можно воспользоваться какой-либо программой для расчета количества громкоговорителей например от компании ТОА. При использовании оборудования других производителей необходимо учитывать отличие их звукового давления от выбранного типа. Программу расчета систем оповещения Вы сможете скачать (8,2mb)

Являются наиважнейшей составляющей систем противопожарной защиты . В процессе проектирования систем оповещения выполняется электроакустический расчет. Основанием для электроакустического расчета является свод правил, разработанный в соответствии со статьей 84 федерального закона ФЗ-123 СП 3.13130.2009 от 22 июля 2008 г. Данная статья опирается на следующие основные пункты свода правил.

  • 4.1. Звуковые сигналы СОУЭ должны обеспечивать общий уровень звука (уровень звука постоянного шума вместе со всеми сигналами, производимыми оповещателями) не менее 75 дБА на расстоянии 3 м от оповещателя, но не более 120 дБА в любой точке защищаемого помещения
  • 4.2. Звуковые сигналы СОУЭ должны обеспечивать уровень звука не менее чем на 15 дБА выше допустимого уровня звука постоянного шума в защищаемом помещении. Измерение уровня звука должно проводиться на расстоянии 1,5 м от уровня пола
  • 4.7. Установка громкоговорителей и других речевых оповещателей в защищаемых помещениях должна исключать концентрацию и неравномерное распределение отраженного звука
  • 4.8. Количество звуковых и речевых пожарных оповещателей, их расстановка и мощность должны обеспечивать уровень звука во всех местах постоянного или временного пребывания людей в соответствии с нормами настоящего свода правил

Смысл электроакустического расчета сводится к определению уровня звукового давления в расчетных точках – в местах постоянного или временного (вероятного) пребывания людей и сравнению данного уровня с рекомендованными (нормативными) значениями.

В озвучиваемом помещении присутствует различного рода шум. В зависимости от назначения и особенностей помещения, а также времени суток, уровень шума варьируется. Наиболее важным параметром при расчете, является величина среднестатистического шума. Шум можно измерить, но правильней и удобней взять его из готовых шум-таблиц:

Таблица 1

Для того чтобы услышать звуковую или речевую информацию, она должна быть громче шума на 3дБ, т.е. в 2 раза. Величину 2 называют запасом звукового давления. В реальных условиях шум меняется, поэтому для отчетливого восприятия полезной информации на фоне шума, запас давления д.б не менее чем в 4 раза – 6 дБ, по нормативам – 15дБ.

Удовлетворение условий изложенных в пунктах 4.6, 4.7 свода правил, достигается организационными мероприятиями – правильной расстановкой громкоговорителей, предварительным расчетом:

  • звукового давления громкоговорителя,
  • звукового давления в расчетной точке ,
  • эффективной площади озвучиваемой одним громкоговорителем,
  • общего количества громкоговорителей необходимого для озвучивания определенной территории.

Критерием правильности электроакустического расчета, является выполнение следующих условий:

  1. Звуковое давление выбранного громкоговорителя д.б. "не менее 75 дБА на расстоянии 3 м от оповещателя", что соответствует величине звукового давления громкоговорителя не ниже 85дБ.
  2. Звуковое давление в расчетной точке д.б. выше уровня среднестатистического шума в помещении на 15дБ.
  3. Для потолочных громкоговорителей необходимо учитывать высоту их установки (высоту потолков).

Если все 3 условия выполнены – электроакустический расчет выполнен, если нет, то возможны следующие варианты:

  • выбрать громкоговоритель с большей чувствительностью (звуковым давлением, дБ),
  • выбрать громкоговоритель с большей мощностью (Вт),
  • увеличить количество громкоговорителей,
  • изменить схему расстановки громкоговорителей.

2. Входные параметры для расчета

Входные параметры для расчетов берутся из технического задания (ТЗ) (предоставляемого заказчиком) и технических характеристик на проектируемое оборудование. Список и количество параметров может варьироваться в зависимости от ситуации. Примерные входные данные приведены ниже.

Параметры громкоговорителей:

  • Pгр – мощность громкоговорителя, Вт,
  • ШДН – Ширина диаграммы направленности, град.

Параметры помещения:

  • N – Уровень шума в помещении, дБ,
  • Н – Высота потолков, м,
  • a – Длина помещения, м,
  • b – Ширина помещения, м,
  • Sп – Площадь помещения, м2.

Дополнительные данные:

  • ЗД – Запас звукового давления, дБ
  • r – Расстояние от громкоговорителя до расчетной точки.

Площадь озвучиваемого помещения:

Sп = a * b

3. Расчет звукового давления громкоговорителя

Зная номинальную мощность громкоговорителя (Рвт) и его чувствительность SPL (SPL от англ. Sound Pressure Level – уровень звукового давления громкоговорителя измеренного на мощности 1Вт, на расстоянии 1м), можно рассчитать звуковое давление громкоговорителя, развиваемое на расстоянии 1м от излучателя.

Рдб = SPL + 10lg(Pвт) (1)
  • SPL – чувствительность громкоговорителя, дБ,
  • Рвт – мощность громкоговорителя, Вт.

Второе слагаемое в (1) называется правилом "удвоения мощности" или правилом "трех децибел". Физическая интерпретация данного правила – при каждом удвоении мощности источника, уровень его звукового давления увеличивается на 3дБ. Данную зависимость можно представить таблично и графически (см. рис.1).

Рис.1. Зависимость звукового давления от мощности

4. Расчет звукового давления

Для расчета звукового давления в критической (расчетной) точке, необходимо:

  1. Выбрать расчетную точку
  2. Оценить расстояние от громкоговорителя до расчетной точки
  3. Рассчитать уровень звукового давления в расчетной точке

В качестве расчетной точки выберем место возможного (вероятного) нахождения людей, наиболее критичное с точки зрения положения или удаления. Расстояние от громкоговорителя до расчетной точки (r) можно рассчитать или измерить прибором (дальномером).

Рассчитаем зависимость звукового давления от расстояния:

Р20 = 20lg(r-1) (2)
  • r – расстояние от громкоговорителя до расчетной точки, м;

ВНИМАНИЕ: формула (2) справедлива при r > 1 .

Зависимость (2) называется правилом "обратных квадратов” или правилом “шести децибел”. Физическая интерпретация данного правила – при каждом удвоении удаления от источника, уровень звука уменьшается на 6дБ. Данную зависимость можно представить таблично и графически, рис.2:

Рис.2. Зависимость звукового давления от расстояния

Уровень звукового давления в расчетной точке:

  • N – Уровень шума в помещении, дБ (N от англ. Noise – шум),
  • ЗД – Запас звукового давления, дБ.

При ЗД=15дБ:

Р > N + 15 (5)

Если звуковое давление в расчетной точке выше уровня среднестатистического шума в помещении на 15дБ – расчет выполнен правильно.

5. Расчет эффективной дальности

Эффективная дальность звучания (L) – расстояние от источника звука (громкоговорителя) до геометрического места расположения расчетных точек, находящихся в пределах ШДН, звуковое давление в которых остается в пределах (N+15дБ). На техническом сленге - “расстояние, которое громкоговоритель пробивает”.

В англоязычной литературе эффективная дальность звучания (effective acoustical distance (EAD)) – расстояние, при котором сохраняется четкость и разборчивость речи (1).

Рассчитаем разность между звуковым давлением громкоговорителя, уровнем шума и запасом давления.

  • p – разность звукового давления громкоговорителя, уровня шума и запаса давления, дБ.
  • 1 – коэффициент учитывающий, что чувствительность громкоговорителя измеряется на 1м.

6. Расчет площади, озвучиваемой одним громкоговорителем

Основанием для оценки величины озвучиваемой площади, является следующая установка:

Расчет будем вести из следующих допущений: Диаграмму направленности (излучения) громкоговорителя, можно представить в виде конуса (звукового поля сконцентрированного в конусе) с телесным углом в вершине конуса, равным ширине диаграммы направленности.

Площадь, озвучиваемая громкоговорителем – проекция звукового поля, ограниченного углом раскрыва на плоскость, проведенную параллельно полу на высоте 1,5м. По аналогии с эффективной дальностью: Эффективная площадь, озвучиваемая громкоговорителем – площадь звуковое давление в пределах которой не превышает значение N+15дБ (ф-ла 5).

ПРИМЕЧАНИЕ: Громкоговоритель излучает во всех направлениях, но мы будем опираться на входные данные – уровни звукового давления в пределах диаграммы направленности. Правильность данного подхода подтверждается статистической теорией.

Разобьем громкоговорители на 3 класса (типа):

  1. потолочные,
  2. настенные,
  3. рупорные.

8. Расчет эффективной площади, озвучиваемой настенным громкоговорителем

9. Расчет эффективной площади озвучиваемой рупорным громкоговорителем

10. Расчет количества громкоговорителей необходимого для озвучивания определенной территории

Рассчитав эффективную площадь, озвучиваемую одним громкоговорителем, зная общие размеры озвучиваемой территории, рассчитаем общее количество громкоговорителей:

К = int(Sп / Sгр) (16)
  • Sп – озвучиваемая площадь, м2,
  • Sгр – эффективная площадь, озвучиваемая одним громкоговорителем, м2,
  • Int – результат округления до целого значения.

11. Электроакустический калькулятор

Общий полученный результат в виде блок-схемы:

Рис.6. Блок-схема электроакустического калькулятора

Пример программирования

В данном калькуляторе (написанном в программе Microsoft Excel) реализована элементарная краткая методика – алгоритм электроакустического расчета, изложенный выше. .


Рис.7. Электроакустический калькулятор в программе Microsoft Excel

На основе разработанного алгоритма расчета работает и.

ПРИЛОЖЕНИЕ 1. Список и краткие характеристики громкоговорителей ROXTON

Громкоговоритель ROXTON SPL, дБ Р вт, Вт ШДН, гр. Р дб, дБ
Потолочные громкоговорители
88 3 90 93
90 6 90 100
88 6 90 96
90 6 90 96
92 20 90 101
92 10 90 98
90 30 90 104
92 10 90 102
92 10 90 104
Настенные громкоговорители
86 2 90 91
90 6 90 96
90 6 90 100
92 10 90 106

4.1. Звуковые сигналы СОУЭ должны обеспечивать общий уровень звука (уровень звука постоянного шума вместе со всеми сигналами, производимыми оповещателями) не менее 75 дБА на расстоянии 3 м от оповещателя, но не более 120 дБА в любой точке защищаемого помещения.

4.2. Звуковые сигналы СОУЭ должны обеспечивать уровень звука не менее чем на 15 дБА выше допустимого уровня звука постоянного шума в защищаемом помещении. Измерение уровня звука должно проводиться на расстоянии 1,5 м от уровня пола.

4.3. В спальных помещениях звуковые сигналы СОУЭ должны иметь уровень звука не менее чем на 15 дБА выше уровня звука постоянного шума в защищаемом помещении, но не менее 70 дБА. Измерения должны проводиться на уровне головы спящего человека.

4.4. Настенные звуковые и речевые оповещатели должны располагаться таким образом, чтобы их верхняя часть была на расстоянии не менее 2,3 м от уровня пола, но расстояние от потолка до верхней части оповещателя должно быть не менее 150 мм.

4.5. В защищаемых помещениях, где люди находятся в шумозащитном снаряжении, а также в защищаемых помещениях с уровнем звука шума более 95 дБА, звуковые оповещатели должны комбинироваться со световыми оповещателями. Допускается использование световых мигающих оповещателей.

4.6. Речевые оповещатели должны воспроизводить нормально слышимые частоты в диапазоне от 200 до 5000 Гц. Уровень звука информации от речевых оповещателей должен соответствовать нормам настоящего свода правил применительно к звуковым пожарным оповещателям.

4.7. Установка громкоговорителей и других речевых оповещателей в защищаемых помещениях должна исключать концентрацию и неравномерное распределение отраженного звука.

4.8. Количество звуковых и речевых пожарных оповещателей, их расстановка и мощность должны обеспечивать уровень звука во всех местах постоянного или временного пребывания людей в соответствии с нормами настоящего свода правил.

Общие положения.

Расчет акустических параметров звуковоспроизводящих устройств предполагает выбор необходимых громкоговорителей в зависимости от действующего уровня фонового шума и выбранной схемы озвучивания. Действующий уровень фонового шума зависит от назначения помещения. Полагается, что для качественного восприятия речи (диспетчерских передач) уровень звукового давления громкоговорителя должен на 10-15дБ превышать уровень фонового шума в наиболее удаленной точке помещения.

При относительно низких фоновых шумах (менее 75дБ) необходимо обеспечивать избыточный уровень полезного сигнала 15дБ, при высоких (более 75дБ) - достаточно 10дБ.

Т.е. требуемый уровень звукового давления:

ДБ - для помещения с относительно низким уровнем фоновых шумов;


, дБ - для помещения с высоким уровнем фоновых шумов;

где - действующий уровень фонового шума в помещении

Для сравнения можно привести характерные уровни для помещений различного назначения:

    нормальная тишина в помещении – 45 – 55дБ;

    приглушенные разговоры в помещении – 55дБ;

    разговоры учащихся во время занятий - 60дБ;

    шумы в среднем магазине – 63дБ;

    шумы на переменах в помещениях учебных заведений, в крупных магазинах - 65 – 70дБ;

    шумы в залах ожиданий вокзалов, очень крупных магазинов и т.п. помещений с большим числом разговаривающих людей - 70 - 75дБ;

    шумы в аппаратных залах и т.п. помещениях с большим числом работающих людей и механизмов – 75 - 80дБ;

    шумы в цехах металло- и деревообрабатывающих предприятий, на крупных фабриках - 85 – 90дБ.

Характеристики громкоговорителей.

К основным характеристикам громкоговорителей относятся их направленность, диапазон частот и уровень звукового давления, развиваемого на одном метре от излучателя.

Ненаправленными громкоговорителями считают динамики, потолочные громкоговорители, а так же всевозможные звуковые колонки (хотя, если считать более строго, колонки занимают промежуточное положение между направленными и ненаправленными системами). Область распространения звука ненаправленных громкоговорителей (диаграмма направленности) достаточно широка (около 60), а уровень звукового давления относительно невелик.

К направленным громкоговорителям в первую очередь относятся рупорные излучатели т.н. «колокольчики». В рупорных громкоговорителях происходит концентрация акустической энергии за счет особенностей конструкции самого рупора, они отличаются узкой диаграммой направленности (около 30) и высоким уровнем звукового давления. Работают рупорные громкоговорители в узкой полосе частот и потому плохо подходят для качественного воспроизведения музыкальных программ, хотя за счет высокого уровня звукового давления хорошо подходят для озвучивания больших площадей, в том числе открытых пространств.

Выбор громкоговорителей по диапазону частот зависит от назначения системы. Для диспетчерских передач и создания музыкального фона вполне достаточен диапазон 200Гц – 5кГц, он обеспечивается практически любыми акустическими устройствами (рупорные излучатели имеют несколько меньший диапазон, но для речевых передач его вполне хватает). Для высококачественного озвучивания, требуются громкоговорители, имеющие диапазон частот не менее 100Гц – 10кГц.

Необходимый уровень звукового давления является единственной характеристикой громкоговорителя, которая определяется по результатам расчетов. Именно с этой характеристикой возникает наибольшее число проблем и в чаще всего они связаны с путаницей между электрической мощностью и звуковым давлением. Между этими величинами существует косвенная зависимость, поскольку громкость звучания определяется звуковым давлением, а мощность обеспечивает работу громкоговорителя, из подводимой мощности только часть преобразуется в звук и величина этой части зависит от к.п.д. конкретного громкоговорителя. Большинство производителей акустических систем приводят или звуковое давление в Паскалях (Па), или уровень звукового давления в дБ на расстоянии 1м от излучателя. Если приведено звуковое давление в Па, а требуется получить уровень звукового давления в дБ, перевод одной величины в другую осуществляется по формуле:


Для типичного ненаправленного громкоговорителя можно принять, что 1Вт электрической мощности соответствует уровню звукового давления примерно 95дБ. Каждое увеличение (уменьшение) мощности вдвое, приводит к увеличению (уменьшению) уровня звукового давления на 3дБ. Т.е. 2Вт – 98дБ, 4Вт – 101дБ, 0.5Вт – 92дБ, 0.25Вт – 89дБ и т.п. Существуют громкоговорители, имеющий звуковое давление на 1Вт мощности менее 95дБ и громкоговорители, обеспечивающие на 1Вт 97 и даже 100дБ, при этом одноваттный громкоговоритель с уровнем звукового давления 100дБ заменяет громкоговоритель мощностью 4 Вт с уровнем 95дБ/Вт (95дБ – 1Вт, 98дБ – 2Вт, 101дБ – 4Вт), очевидно, что применение такого громкоговорителя более экономично. Можно добавить, что при одной и той же электрической мощности уровень звукового давления потолочных громкоговорителей на 2 – 3 дБ ниже, чем настенных. Это связано с тем, что настенный громкоговоритель расположен либо в отдельном корпусе, либо у хорошо отражающей задней поверхности, поэтому звук, излучаемый назад, практически полностью отражается вперед. Потолочные громкоговорители, как правило, крепятся на фальшпотолках или подвесах поэтому звук, излучаемый назад, не отражается и

не влияет на повышение фронтального звукового давления. Рупорные громкоговорители при мощностях 10 – 30 Вт обеспечивают звуковое давление 12-16Па (115-118дБ) и более имея, тем самым, наиболее высокое соотношением дБ/Вт.

В заключение, еще раз обращаем внимание на то, что при расчетах громкоговорителей необходимо обращать внимание на развиваемое им звуковое давление, а не на электрическую мощность , и только при отсутствии этой характеристики в описании, руководствоваться типовой зависимостью - 95дБ/Вт.

Расчет мощности громкоговорителей для сосредоточенных систем.

Расчет мощности громкоговорителей для сосредоточенных систем осуществляется в следующем порядке:

    определяется необходимый уровень звука в удаленной точке озвучиваемого помещения:


,дБ, где - действующий уровень фонового шума в помещении, 10 –превышение требуемого уровня звукового давления над фоном.


, Па


, где - расстояние от громкоговорителя до крайней точки.

Если в сосредоточенной системе используется несколько громкоговорителей, то


, где -число громкоговорителей в сосредоточенной системе.


Пример:

Исходные данные: -- 15м;

- 65дБ.

= 65 + 10 = 75дБ;


=

= 0.112Па;


= 0.112*15=1.68Па;


=

= 98.5дБ.

Типовой громкоговоритель мощностью 1Вт обеспечивает уровень звукового давления примерно 95дБ, мощностью 2Вт – 98дБ. Требуемый расчетный уровень звукового давления 98.5дБ чуть больше 2Вт, следовательно можно применить двухваттный громкоговоритель.

Исходные данные: - 15м;

уровень фонового шума в помещении - - 75дБ.

Требуемый уровень звука в удаленной точке -

= 75 + 10 = 85дБ;


=

= 0.35 Па;


= 0.35 *15/2=3.6Па;


=

= 105дБ.

Типовой громкоговоритель мощностью 1Вт обеспечивает уровень звукового давления примерно 95дБ, мощностью 2Вт – 97дБ, 4Вт – 101дБ, 8Вт – 104дБ Следовательно, каждый из двух громкоговорителей должен иметь мощность около 8Вт.

Исходные данные: расстояние от громкоговорителя до удаленной точки - 80м;

уровень фонового шума - - 70дБ.

Требуемый уровень звука в удаленной точке -

= 70 + 10 = 80дБ;

Требуемое звуковое давление в удаленной точке:


=

= 0.19 Па;

Необходимое звуковое давление на расстоянии 1м от громкоговорителя:


= 0.19 *80= 15.96Па;

Уровень звукового давления, которое должен развивать громкоговоритель на расстоянии 1м:


=

= 117.6 дБ.

Громкоговоритель типа 50ГРД-3 мощностью 50Вт, имеет уровень звукового давления 118дБ, т.е. достаточен для озвучивания участка на заданном расстоянии.

    Для упрощения расчетов мощности типовых громкоговорителей для небольших помещений (как правило, с сосредоточенной системой) можно воспользоваться графиками, приведенными ниже (Рис.4.9). Графики получены для помещений, из расчета соотношения ширины к длине (b/L) = 0.5 и потолками высотой 3 - 4.5м. Использована зависимость несколько больше типовой - 97дБ/Вт. Над каждой кривой приведен уровень фонового шума и в скобках, необходимый уровень звукового давления. Например, помещение площадью 80м.кв., уровень фонового шума 72дБ, требуемый уровень звукового давления 82 дБ, по графику - необходимая электрическая мощность типового громкоговорителя - 4 Вт.

Расчет мощности громкоговорителей для распределенных систем

Расчет мощности громкоговорителей для одинарной и двойной настенной цепочки:

    определяется необходимый уровень звука в помещении:


, дБ, где - действующий уровень фонового шума в помещении.

    рассчитывается звуковое давление, которое должен развивать громкоговоритель в удаленной точке:


, Па

    определяется звуковое давление, которое должен развивать громкоговоритель на расстоянии 1м:

для одиночной цепочки или цепочки, расположенной в шахматном порядке


, Па,

для двойной цепочки:


, Па

где b ширина помещения,D - расстояние между громкоговорителями в цепочке. ВместоD можно подставить выражение:D =L / N , где L – длина помещения, N– количество громкоговорителей вдоль одной стены.

    определяется уровень звукового давления, которое должен обеспечивать каждый громкоговоритель:


1. Расчет ожидаемых уровней звукового давления в расчетной точке и требуемого снижения уровней шума.

Если в помещение находится несколько источников шума с разными уровнями излучаемой , то уровни звукового давления для среднегеометрических частот 63, 125, 250, 500, 1000, 2000, 4000 и 8000 Гц и расчетной точке следует определяет по формуле:


L - ожидаемые октавные уровни давления в расчетной точке, дБ; χ - эмпирический поправочный коэффициент, принимаемый в зависимости от отношения расстояния rот расчетной точки до акустического центра к максимальному габаритному размеру источника 1макс, рис.2 (методические указания). Акустическим центром источника шума, расположенного на полу, является проекция его геометрического центра на горизонтальную плоскость. Так как отношение r/lмакс во всех случаях, то примем и

определяется по табл. 1 (методические указания). Lpi - октавный уровень звуковой мощности источника шума, дБ;

Ф - фактор направленности; для источников с равномерным излучением принимается Ф=1; S - площадь воображаемой поверхности правильной геометрической формы, окружающей источник и проходящей через расчетную точку. В расчетах принять, где r - расстояние от расчетной точки до источника шума; S = 2πr 2

2 x 3,14 x 7,5
2 x 3,14 x 11
2 x 3,14 x 8
2 x 3,14 x 9,5
2 x 3,14 x 14

2 = 1230,88 м 2

ψ- коэффициент, учитывающий нарушение диффузности звукового поля в помещении, принимаемый по графику рис.3 (методические указания) в зависимости от отношения постоянной помещения В к площади ограждающих поверхностей помещения

В - постоянная помещения в октавных полосах частот, определяемая по формуле, где по табл. 2 (методические указания) ; м - частотный множитель определяемый по табл. 3 (методические указания).

Для 250 Гц: μ=0,55 ; м 3

Для 250 Гц: μ=0,7 ; м 3

Для 250 Гц: ψ=0,93

Для 250 Гц: ψ=0,85

т - количество источников шума, ближайших к расчетной точке, для которых (*). В данном случае выполняется условие для всех 5 источников, поэтому т =5.

n- общее количество источников шума в помещении с учетом коэффициента

одновременности их работы.

Найдем ожидаемые октавные уровни звукового давления для 250 Гц:

L = 10lg (1x8x10/ 353,25 +1x8x10/ 759,88 + 1x3,2x10/ 401,92 + 1x2x10/ 566,77 +1x8x10/ 1230,88 + 4 х 0,93 х(8x10 + 8x10+

3,2x10+2x10 +8x10) / 346,5)= 93,37дБ

Найдем ожидаемые октавные уровни звукового давления для 500 Гц:

L= 10lg (1x1,6x10/ 353,25 + 1x5x10/ 759,88 + 1x6,3x10/ 401,92 +

1x 1x10/ 566,77 + 1x1,6x10 / 1230,88 + 4 х 0,85 х(1,6x10 + 5x10+

6,3x10+ 1x10+1,6x10) / 441)= 95,12 дБ

Требуемое снижение уровней звукового давления в расчетной точке для восьми

октавных полос по формуле:

, где

Требуемое снижение уровней звукового давления, дБ;

Полученные расчетом октавные уровни звукового давления, дБ;

L доп - допустимый октавный уровень звукового давления в изолируемом от шума

помещений, дБ, табл. 4 (методические указания).

Для 250 Гц: ΔL = 93,37 - 77 = 16,37 дБ Для500 Гц: ΔL = 95,12 - 73 = 22,12 Дб


2.Расчет звукоизолирующих ограждений, перегородок.

Звукоизолирующие ограждения, перегородки применяются для отделения «тихих» помещений от смежных «шумных» помещений; выполняются из плотных, прочих материалов. В них возможно устройство дверей, окон. Подбор материала конструкции производится по требуемой звукоизолирующей способности, величина которой определяется по формуле:

-суммарный октавный уровень звуковой мощности

излучаемой всеми источниками определяемый с помощью табл. 1 (методические указания).

Для250Гц: дБ

Для 500 Гц:

B и – постоянная изолируемого помещения

В 1000 =V/10=(8x20x9)/10=144 м 2

Для 250 Гц: μ=0,55 B И =В 1000 ·μ=144·0,55=79,2 м 2

Для 500 Гц: μ=0,7 B И =В 1000 ·μ=144·0,7=100,8 м 2

т - количество элементов в ограждении (перегородка с дверью т=2) S i - площадь элемента ограждения

S стены = ВхН - S двери = 20 · 9 - 2,5 = 177,5 м 2

Для 250 Гц:

R треб.стены = 112,4 - 77 – 10lg79,2 + 10lg177,5 + 10lg2 = 41,9 дБ

R треб.двери = 112,4 - 77 – 10lg79,2 + 10lg2,5 + 10lg2 = 23,4 дБ

Для 500 Гц:

R треб.стены = 115,33 - 73 – 10lg100,8 + 10lg177,5 + 10lg2 = 47,8 дБ

R треб.двери = 112,4 - 73 – 10lg100,8 + 10lg2,5 + 10lg2 = 29,3 дБ

Звукоизолирующее ограждение состоит из двери и стены, подберем материал

конструкций по табл. 6 (методические указания).

Дверь - глухая щитовая дверь толщиной 40мм, облицованная с двух сторон фанерой толщиной 4мм с уплотняющими прокладками.Стена - кирпичная кладка толщиной с двух сторон в 1 кирпич.

3.3вукопоглащающие облицовки

Применяются для снижения интенсивности отраженных звуковых волн.

Звукопоглощающие облицовки (материал, конструкция звукопоглощения и т.д.) следует производить по данным табл. 8 в зависимости от требуемого снижения шума.

Величина возможного максимального снижения уровней звукового давления в расчетной точке при применении выбранных звукопоглощающих конструкций определяется по формуле:

В -постоянная помещения до установки в нем звукопоглощающей облицовки.

B 1 - постоянная помещения после установки в нем звукопоглощающей конструкции и определяется по формуле:

A=α(S огр - S обл)) - эквивалентная площадь звукопоглощения поверхностей не занятых звукопоглощающей облицовкой;

α -средний коэффициент звукопоглощения поверхностей не занятых звукопоглощающей облицовкой и определяется по формуле:

Для 250Гц: α = 346,5 / (346,5 + 2390) = 0,1266

Для 500 Гц: α = 441 / (441 + 2390) = 0,1558

Sобл - площадь звукопоглощающих облицовок

Sобл =0,6 S огр = 0,6 х 2390 = 1434 м 2 Для 250 Гц: А 1 = 0,1266 (2390 - 1434) = 121,03 м 2 Для 500 Гц: А 1 = 0,1558 (2390 - 1434) = 148,945 м 2

ΔА - величина добавочного звукопоглощения, вносимого конструкцией звукопоглощающей облицовки, м 2 определяется по формуле:

Реверберационный коэффициент звукопоглощения выбранной конструкции облицовки в октавной полосе частот, определяемый по табл.8 (методические указания). Выбираем супертонкое волокно,

ΔА = 1 х 1434 =1434 м 2

конструкциями, определяемый по формуле:

Для 250 Гц: = (121,03 + 1434) / 2390 = 0,6506 ;

В 1 = (121,03 + 1434) / (1 - 0,6506) = 4450,57 м 2

ΔL= 10lg (4450,57 х 0,93 / 346,5 х 0,36) = 15,21 дБ ".

Для 500 Гц: = (148,945 + 1434) / 2390 = 0,6623 ;

В 1 =(148,945 + 1434) / (1 - 0,6623) = 4687,43 м 2

ΔL = 10lg (4687,43 х 0,85 / 441 х 0,35) = 14,12 дБ.

Для 250 Гц и 500 ГЦ выбранная звукопоглощающая облицовка не будет обеспечивать необходимое снижение уровня шума в октавных полосах частот так как:

Дано: В рабочем помещении длиной А м, шириной В м, и высотой Н м
размещены источники шума – ИШ1, ИШ2, ИШ3, ИШ4 и ИШ5 с уровнями звуковой мощности. Источник шума ИШ1 заключен в кожух. В конце цеха находится помещение вспомогательных служб, которое отделено от основного цеха перегородкой с дверью площадью. Расчетная точка находится на расстоянии г от источников шума.


4. Уровни звукового давления в расчетной точке - РТ, сравнить с допустимыми по нормам, определить требуемое снижение шума на рабочих местах.

5. Звукоизолирующую способность перегородки и двери в ней, подобрать материал для перегородки и двери.

6. Звукоизолирующую способность кожуха для источника ИШ1. Источник шума установлен на полу, размеры его в плане - (а х b) м, высота - h м.

4. Снижение шума при установке на участке цеха звукопоглощающей облицовки. Акустические расчеты проводятся в двух октавных полосах на среднегеометрических частотах 250 и 500Гц.

Исходные данные:

Величина 250Гц 500Гц Величина 250Гц 500Гц
103 100
97 92
100 99
82 82
95 98

Нормативами предусмотрено наличие подсистем светового и предупреждения в системах пожарной сигнализации. И если места размещения, габаритные размеры приборов их яркость и цвет для подсистемы светового предупреждения строго прописаны. То для звуковой сигнализации указаны только исходные данные, на которые необходимо опираться в процессе самостоятельного расчета количества, мощности и размещения устройств оповещения.

Входные данные (нормативы)

Согласно СП 6.13130.2009 и НПБ 104-03 сила (СЗС) для системы оповещения и управления эвакуацией (СОУЭ) должна отвечать следующим параметрам:

  • СЗС на расстоянии 3 м от оповещателя должна составлять не менее 75 дБ;
  • СЗС не должна превышать 120 дБ в любой точке помещения;
  • СЗС должна быть на 15 дБ выше, чем максимально допустимый уровень шума, который может быть создан в помещении одновременным включением всех приборов;
  • СЗС в спальне должна быть на 15 Дб выше уровня шума в помещении, но не ниже 70 Дб.

При определении максимального шумового загрязнения в помещении эмпирическим способом, замер необходимо производить на высоте 1,5 от уровня пола. В спальных помещениях замеры производятся на уровне головы спящего.

Немного теории

При произведении расчетов системы речевого оповещения может встретиться терминология звуковое давление устройства. Термин произошел от SPL «sound pressure level» он фактически характеризует работоспособность и эффективность каждого устройства (оповещателя). Определяется с расстояния 1м в направлении оси излучения, измеряется в Дб. Однако мощность аппаратуры звукового излучателя дана в Ваттах (Вт). Эти два параметра имеют соответствие которое выражается в формуле. Однако в среде инженеров приняты упрощения и было решено, что для ненаправленного стандартного извещателя это соотношение будет составлять 95 Дб звукового давления на 1 Вт мощности оборудования.

Каждое изменение мощности устройства в два раза (неважно, увеличение или уменьшение) изменяет уровень давления всего на 3 Дб. Примером может послужить устройство мощностью в 2 Вт, которое имеет громкость 98 Дб, при увеличении мощности до 4 Вт, звуковое давление будет 101 Дб и т.д.

При расчете звукового давления системы оповещения следует учитывать факторы, влияющие на подбор установок акустического излучения:

Естественно, что в помещении происходит более чем одно событие, но величины шумов при этом не складываются, а поглощаются. Накладываясь синфазно, что дает незначительное повышение общего уровня на 1-3 Дб.

Методология проведения расчетов

Методика расчета звукового давления для систем оповещения производится в 5 этапов:

  1. Снять первичную информацию о помещении, где планируется установка системы оповещения:
    • Размеры;
    • Планировка;
    • Типовые шумы;
  2. Определить допустимый уровень шумового давления;
  3. Исходя из параметров, вычислить уровень падения сигнала от точки предполагаемой установки, до наиболее удаленных участков помещения;
  4. Выбрать более подходящие параметры конкретного типа оповещателя и определить уровни его сигнала в оборудуемом помещении, с учетом диаграммы направленности;
  5. Определить потребление электроэнергии в режиме максимального функционирования (тревога, пожар и т.п.).

Нужно быть готовым к тому, что пункты 3 и 4 нужно будет переделывать несколько раз. Действия, которые необходимо предпринять если уровень сигнала в отдаленной точке помещения ниже установленного значения.

Задание на проектирование (исходные данные)

По ТЗ есть помещение размерами 12,5 х 25 м. необходимо установить звуковые излучатели в соответствии со всеми приведенными нормативами.

Для начала определим имеющееся оборудование:

Извещатель серии ЕМА с низкопрофильной базой ELPB, а также его полный аналог, но со стробоскопической световой вспышкой. Оба устройства имеют звуковое давление на расстоянии 1 м в 100 Дб:

Изначально понятно, что установив один звуковой извещатель в начале помещения, длинной 25 м, в конце будет получено звуковое давление гораздо меньше требуемого по нормативам минимального 70 Дб. Следовательно, произведя приблизительный расчет количества речевых оповещателей, примем рабочую версию о необходимости установки 2 устройств по одному на каждую сторону помещения.

Как видно из расчетов, на расстоянии до центра комнаты, равное 12,5 м, падение звукового давления в соответствии с таблицей составило 22 Дб, а до средины стены 14 м — 23 Дб. Расстояние от устройства до ближнего угла всего 6 м что уменьшило силу звука на 16 Дб.

Следовательно, до средины помещения одним звуковым излучателем полностью покрывается вся потребность в громкости. В центре комнаты происходит наложение двух равных синфазных сигналов, что в итоге даст увеличение звукового давления всего на 3Дб.

Взяв самый простой пример, прямоугольного помещения, мы получили искомый результат всего за один прогон алгоритма. Количество звуковых оповещателей мощностью 100Дб – 2 шт. При этом следует отметить, что максимально допустимая громкость звука в 120 Дб не превышена. А звуки офиса: компьютер, кондиционер, шелест страниц даже размещенные в центре помещения, перекрываются с необходимым превышением 15 Дб.

Здравствуйте, дорогие друзья! На связи с вами Владимир Раичев, я приготовил для вас еще одну достаточно интересную статью. Дело в том, что перед монтажом СОУЭ обязательно производится акустический расчет системы оповещения. А вы знали об этом? О том, что это такое и с чем это едят я и постараюсь вам рассказать.

При строительстве многих помещений здания крайне важно, как в них распространяется звук. Концертные залы, театры – яркий пример тому. Акустика этих помещений во многом определяет посещаемость, желание знаменитостей выступать там.

Акустический расчет таких культурно-развлекательных учреждений ведется на стадии проектирования, когда можно изменить достаточно много строительных параметров для улучшения звучания голоса, музыкальных инструментов.

Сложнее, если необходимо выполнить расчет акустики существующего, эксплуатируемого помещения или здания. Именно с этим чаще всего приходится сталкиваться тем, кто проектирует (СОУЭ) на случай непредвиденных, чрезвычайных ситуаций – пожаров, взрывов, техногенных катастроф.

Следует пояснить, что все СОУЭ можно условно поделить на 2 группы:

  • Звукового оповещения – это 1 или 2 тип систем, где оконечными устройствами – сигналами тревоги являются сирены и другие источники резкого, громкого звука различной тональности.
  • Речевого – это 3 (наиболее распространенный) или 4, 5 типы. Там применяются оповещатели – громкоговорители, акустические колонки, рупоры, используемые для большинства помещений; звуковые прожекторы для помещений большой протяженности; линейные массивы для трансляции сообщений, заранее записанных текстов в спортивных, культурно-развлекательных заведениях, аэропортах, железнодорожных вокзалах.

Обычно акустический расчет СО проводят при проектировании новых объектов строительства, оборудовании уже эксплуатируемых зданий системами 3–5 типов.

Обусловлено это тем, что 1, 2 типы применяются в небольших по площади, вместимости, числу мест, строительному объему, этажности помещениях или зданиях, где установленные звуковые сирены, тонированные сигналы позволяют обеспечить отличную слышимость за счет громкости, резкого отличия от уровня привычного фонового шума в любой точке помещений здания.

Уровень шума в помещениях, мощность акустических устройств

Следует отметить, что фоновый уровень шума в помещениях здания, на территории предприятия, организации – это одна из значительных характеристик, определяющих проведение акустического расчета системы оповещения, влияющая на ее эффективную работу.

По повседневному уровню шума помещения можно поделить на следующие типы:

  • Малошумные – кабинеты административных, управляющих органов, офисы, лечебные учреждения.
  • С небольшим уровнем шума – торговые павильоны, магазины, здания аэропортов и железнодорожных вокзалов.
  • Шумные. Супер- и гипермаркеты, залы спортивных, культурно-развлекательных учреждений, складские комплексы с использованием электрических погрузчиков.
  • С повышенным уровнем фонового шума. Склады с техникой, имеющей двигатели внутреннего сгорания, места проведения погрузочно-разгрузочных работ с использованием подъемной техники, производственные помещения.
  • Очень шумные. Перроны железнодорожных вокзалов, музыкальные клубы.

Естественно, что звуковое давление устройств речевого оповещения, определяющее их громкость, должно значительно превышать уровень шума, сильно ослабляющего звук любого громкоговорителя, подобного ему устройства.

Не всегда такое решение возможно. В помещениях музыкальных клубов, киноконцертных залов, кинотеатров, где значения обычного для них уровня звука и так приближаются к критическим для органов слуха, необходимо уменьшать громкость или полностью отключать трансляцию музыкальной программы, озвучивания фильма перед подачей сообщения о тревоге либо блокировать СОУЭ с системой звукоусиления культурно-развлекательного учреждения.

Мощность, вид, способ монтажа (потолочные, настенные, подвесные), их количество, а также расстояние, угол, радиус, максимально возможная площадь озвучивания акустических устройств, места их оптимальной расстановки в помещениях здания – основные характеристики, используемые, определяемые при проведении акустического расчета.

Исходные данные

Прежде всего, это измеренный на месте или заранее рассчитанный, усредненный максимум уровня шума в помещении, где будут установлены устройства речевого оповещения. Вот примерные значения для различных объектов:

  • Гостиницы, лечебные, образовательные, культурно-просветительские учреждения – 55–65 дБ.
  • Административные, офисные помещения, торговые павильоны, магазины, склады – 65–70 дБ.
  • Крупные торговые центры, рестораны, вокзалы, аэропорты – 70–75 дБ.
  • Производственные цеха промышленных предприятий, концертные, спортивные комплексы – 75–80 дБ.

Кроме того, для акустического расчета потребуются следующие сведения:

  • Геометрические размеры помещения.
  • Уровень звукового давления, выбранных устройств оповещения.
  • Чувствительность, мощность оповещателей.
  • Ширина диаграммы направленности каждого устройства, определяющая зону полноценного оповещения.
  • Площадь озвучивания оповещателя (на основании технического паспорта изделия) в зависимости от уровня шума.

Все эти данные служат основой для проведения акустического расчета.

Методики и программы расчета

Существуют методики, указания по самостоятельному проведению расчета, где расписана четкая последовательность выбора факторов, а также предоставлены формулы, таблицы, графики, диаграммы, необходимые для установления основных параметров СОУЭ для каждого вида помещений, зданий.

Кроме того, чтобы ускорить, упростить процесс, разработаны компьютерные программы для акустического расчета системы оповещения.

Существуют как платные сервисы, предоставляемые независимыми компаниями-разработчиками; организациями, занимающимися проектированием СОУЭ, так и бесплатные программы расчета от производителей изделий-компонентов систем оповещения, звукового оборудования, которые можно загрузить с их официальных сайтов.

Основные параметры, последовательно определяемые акустическим расчетом:

  • Максимальное расстояние озвучивания, выбранного оповещателя в условиях предстоящей эксплуатации.
  • Максимальный радиус озвучивания.
  • Реальный угол диаграммы направленности.
  • Максимально возможная площадь озвучивания оповещателя.

Затем с учетом последней характеристики на плане-схеме помещения, подлежащего оборудованию системой оповещения, выполняется расстановка всех оповещателей – громкоговорителей, звуковых колонок, других акустических систем, используемых в составе СОУЭ, так, чтобы в любой точке помещения можно было услышать тревожное сообщение о чрезвычайной ситуации, действиях для безопасной эвакуации из здания.

Необходимое количество звуковых устройств речевого оповещения, в свою очередь, служит основой для расчета суммарной мощности системы, выбора трансляционных усилителей, коммутационных устройств, источников резервного питания на случай отключений электроснабжения здания, построения схемы СОУЭ в целом.

Нюансы акустического расчета

Недостаточно определить единичную, суммарную мощность необходимых устройств оповещения для данного помещения или здания. Существует много тонкостей, мелочей, известных специалистам проектных, монтажных организаций, установленных как теоретически, так и из опыта эксплуатации систем речевого оповещения, влияющих на ее работу:

  • Расстояние между соседними оповещателями не должно превышать удвоенного максимального радиуса озвучивания для данной модели изделия.
  • Все выбранные для использования в системе оповещения акустические устройства не должны иметь внешних регуляторов звука, выдаваемой мощности.
  • Кроме громкости в речевом оповещении, крайне важна четкая слышимость, разборчивость и равномерность подачи информации. Поэтому не следует пытаться установить один или несколько очень мощных звуковых колонок, громкоговорителей, чтобы перекрыть всю площадь помещения.
  • В залах, других помещениях большой площади необходимы распределенные системы оповещения, состоящие из большого количества равномерно рассредоточенных оповещателей, площадь озвучивания которых перекрывает друг друга. Это позволит исключить как излишнюю концентрацию, так и неправильное распределение отраженного звука.
  • В то же время в коридорах, узких и длинных помещениях рекомендуется использовать звуковые прожекторы с регулируемой специалистами мощностью звукового давления для выбора оптимального восприятия в каждой точке. Это позволит в зданиях коридорного типа значительно сократить количество оповещателей, необходимую мощность усилителей для трансляции сообщений, и в результате уменьшит стоимость системы.

Почему доверить акустический расчет необходимо профессионалам

Но это только «вершина айсберга». Не сомневаясь в знаниях, компетенции технических специалистов предприятий, организаций, следует предостеречь их от самостоятельного проведения акустического расчета, если он будет служить основой для монтажа системы речевого оповещения. Этому есть несколько причин:

  • Для монтажа СОУЭ, неотъемлемой составной частью которой является звуковая, речевая система оповещения, в существующих, эксплуатируемых зданиях в обязательном порядке необходима лицензия МЧС на данный вид работ.
  • В то же время, парадоксально, но проектировать СОУЭ в таких зданиях можно без каких-либо разрешительных документов. Однако на практике, рабочий проект СОУЭ обычно разрабатывается организацией, в дальнейшем выполняющей монтаж и наладку, подписывающей акт выполненных работ, в том числе в территориальном органе МЧС (насколько мне не изменяет память, этот процесс добровольный), и соответственно, несущей полную ответственность в соответствии с законодательством.
  • Для новостроящихся объектов на проектирование и монтаж СОУЭ требуются допуски СРО для юридического лица.

К тому же достаточно непросто согласовать рассчитанные акустические величины с техническими, электрическими параметрами, характеристиками трансляционных усилителей мощности, коммутационных устройств, источников бесперебойного, резервного питания, без специальных методик, чтобы работа системы была устойчивой, а речевые сообщения, музыкальная трансляция были четко слышны в любом помещении защищаемого СОУЭ здания.

Поэтому для проектирования, проведения монтажно-наладочных работ лучше, целесообразней привлекать специалистов предприятий, организаций, имеющих соответствующие разрешительные документы, продолжительный опыт работы в области ПБ.

Полезно будет узнать об объектах, где ими проектировалась, монтировалась система речевого оповещения, чтобы самостоятельно убедиться в ее эффективности. Отзывы собственников здания, арендаторов помещений также будут нелишними.

Кочнов Олег Владимирович
руководитель учебно-производственного отдела компании ESCORT GROUP

Интенсивные экономические преобразования, происходящие в нашей стране, усовершенствованная и упрочненная нормативная база способствуют возрождению промышленности, росту числа производственных предприятий. Во исполнение федерального закона от 22.07.2008 - ФЗ № 123-ФЗ «Технический регламент о требованиях пожарной безопасности», имеющиеся на промышленных предприятиях производственные помещения с работающими в них людьми должны быть защищены системами противопожарной безопасности. Наиважнейшей частью, обеспечивающей комплексную безопасность зданий и сооружений, являются организационные мероприятия, элементом которых является электроакустический расчет. Цель данной статьи - познакомить читателя с методикой электроакустического расчета (ЭАР), дать его как нормативное, так и фактическое обоснование - очертить специфику расчета в условиях высоких шумов, характерных для промышленных предприятий, продемонстрировать примеры расчета.

При возникновении пожара (или иных чрезвычайных ситуаций), возникающих внутри производственных помещений (или на территории защищаемого предприятия), задействуется (автоматически включается) система оповещения, осуществляющая трансляцию специально разработанных текстов, необходимых для эффективной эвакуации людей в безопасное место.

На промышленных предприятиях используются следующие типы систем оповещения:

■ системы оповещения и управления эвакуацией (СОУЭ), проектируемые на основании ;

■ объектовые (ОСО) и локальные (ЛСО) системы оповещения при чрезвычайных ситуациях, а также системы громкоговорящей связи, проектируемые на основании . Нормативным основанием для проектирования централизованных, локальных и объектовых систем оповещения является федеральный закон № 68-ФЗ «О защите населения и территорий от чрезвычайных ситуаций природного и техногенного характера» от 21.12.1994.

На особо крупных объектах, таких как атомные или гидроэлектростанции, используются командно-поисковые системы (комплексы).

Достоверность передачи аварийного сообщения определяется характеристиками, функциональностью и надежностью технических средств систем оповещения, а вот достоверность восприятия может быть подтверждена только расчетами.

Электроакустический расчет позволяет с достаточно высокой точностью определить уровень звукового давления в так называемой расчетной точке (РТ) - точке (месте) возможного нахождения людей. Такие точки выбираются в местах наиболее критичных с точки зрения как удаления, так и присутствующего в них шума. Зная расстояние между расчетной точкой и звуковым источником, легко определить степень уменьшения звукового давления на расстоянии, однако этого совсем не достаточно. Согласно требованиям нормативной документации необходимо обеспечить условия, при которых полученный уровень попадет в определенные границы.

В специфике промышленных предприятий наиболее важной задачей является определение точного значения уровня шума на рабочих местах. Следует заметить, что измерительные приборы в такого рода задачах могут использоваться лишь как вспомогательные средства в силу постоянно меняющихся условий. Таким образом, условия четкого восприятия могут быть достигнуты решением двух задач - эффективной расстановкой громкоговорителей и защитными акустическими мероприятиями.

Любая из этих систем в качестве конечного исполнительного элемента использует громкоговоритель - устройство, осуществляющее преобразование электрического сигнала на входе в акустический (слышимый) сигнал на выходе. В зависимости от требований к характеру передаваемой (транслируемой) информации, к громкоговорителю предъявляются различные требования. Так, по требованиям, изложенным в , если численность людей, работающих на производственном объекте: в цеху, на складском помещении, в лаборатории и т. д., превышает 100 человек, то для защиты такого объекта применяется СОУЭ 3 типа - речевая система оповещения, осуществляющая трансляцию специально разработанных текстов. В этом случае громкоговоритель должен эффективно работать в диапазоне от 200 Гц до 5 кГц. Под понятием эффективности следует понимать как величину звукового давления (громкости), так и КПД громкоговорителя. Для повышения степени информативности СОУЭ включают и световой способ оповещения.

ОСНОВЫ ЭЛЕКТРОАКУСТИЧЕСКОГО РАСЧЕТА

Понятие «акустический расчет» (АР) само по себе является достаточно емким. В контексте обеспечения безопасности людей, находящихся внутри производственных помещений, выполняется так называемый электроакустический расчет (ЭАР), в процессе которого:

■ анализируется защищаемое помещение;

■ выбираются расчетные точки (РТ);

■ рассчитывается звуковое давление в РТ;

■ определяются уровни шума (УШ) в РТ, характерные для данного помещения;

■ выявляются дополнительные источники шума;

■ проверяются граничные условия расчета;

■ выбираются параметры громкоговорителей и определяются схемы их расстановки;

■ в случае невыполнения граничных условий разрабатываются организационные мероприятия, повышающие достоверность передачи информации.

Требования, предъявляемые к ЭАР, можно найти в , а методику - в Приложении А, к , однако, следует заметить, что имеющаяся в данном приложении методика для какого-либо серьезного расчета совершенно непригодна.

Название расчета - электроакустический - обусловлено учетом электрических параметров звукового тракта, являющихся входными для акустического расчета. Следует заметить, что требования к расчету, изложенные в , не вполне достаточны, однако, являются необходимыми, поэтому основное внимание в данной статье будет уделено выполнению именно этих требований. Что касается специфики данного расчета, в частности, высоких шумов, будем опираться на СНиП по Шуму , в котором достаточно подробно излагаются как расчетные, так и организационные мероприятия по расчету, учету и борьбе с высокими шумами.

Рассмотрим основные понятия, необходимые для выполнения ЭАР.

ОСНОВНЫЕ ПАРАМЕТРЫ ГРОМКОГОВОРИТЕЛЯ

Согласно нормативной документации, громкоговорители должны воспроизводить звуковой или речевой сигнал в диапазоне: 200 Гц - 5 кГц.

Звуковое давление громкоговорителя измеряется в децибелах (дБ) и определяется как его чувствительностью Р 0 , дБ, так и электрической мощностью, Р вт, Вт, подведенной к его входу:

Р дб = Р о + 10log (Р вт / Р пор), (1)

Р о - чувствительность громкоговорителя, дБ; Р вт - мощность громкоговорителя, Вт; Р пор - пороговая мощность, = 1Вт.

Чувствительность громкоговорителя, дБ - уровень звукового давления, измеренного на рабочей оси громкоговорителя на расстоянии 1 м от рабочего центра на частоте 1 кГц при мощности 1 Вт. Мощность громкоговорителя берется из паспорта, предоставляемого производителем или поставщиком, при этом следует обращать внимание на следующие обстоятельства:

1) Если в паспорте нет никаких специальных ссылок или указаний, то (в большинстве случаев) указывается т. н. RMS мощность, измеренная на 1кГц.

2) На т. н. «градации включения».

Здесь требуется комментарий. Дело в том, что громкоговорители, используемые в системах оповещения, являются трансформаторными. Первичная обмотка трансформатора имеет, как правило, несколько отводов, имеющих различный импеданс и позволяющих работать на различных мощностях, поэтому в формуле (1) необходимо указывать конкретную мощность включения.

Исполнение. Немаловажным параметром громкоговорителей, характерным для производственных помещений, является параметр, называемый «исполнение». Для различных условий эксплуатации (температура, влага, пыль, агрессивные среды) могут использоваться громкоговорители с различными классами исполнения (защиты). При низких температурах используются морозостойкие громкоговорители. При повышенной концентрации влаги и пыли - громкоговорители с различными степенями защиты, определяемые индексом IP:

■ IP-41 - закрытые помещения;

■ IP-54 - уличное исполнение;

■ IP-67 - высокая степень защиты от пыли и влаги. Дополнительные параметры громкоговорителя будут рассмотрены ниже.

ИСХОДНЫЕ ДАННЫЕ ДЛЯ ЭЛЕКТРОАКУСТИЧЕСКОГО РАСЧЕТА

Исходными данными для ЭАР (на производственных предприятиях) являются:

■ план и разрез помещения с расположением технологического и инженерного оборудования с целью выбора расчетных точек;

■ определение уровня шума в расчетных точках;

■ сведения о характеристиках ограждающих конструкций помещения (коэффициенты поглощения);

■ технические характеристики и геометрические размеры источников шума.

Для расчета уровня звукового давления в расчетной точке необходимо рассмотреть два важных понятия:

■ само понятие «расчетная точка» (РТ);

■ понятие «уровень шума» (УШ) в РТ.

РАСЧЕТНАЯ ТОЧКА

Расчетная точка - место возможного (вероятного) нахождения людей наиболее критичное с точки зрения положения и удаления от звукового источника (громкоговорителя). РТ выбирается на расчетной плоскости - (мнимой) плоскости, проведенной параллельно полу на высоте 1,5 м, (1,2 м для сидячих мест) в месте с наихудшими условиями -точке наиболее удаленной от громкоговорителя или в точке с наибольшим УШ.

Согласно НД , РТ выбираются:

■ в зоне прямого звука;

■ в зоне отраженного звука;

■ в середине толпы (месте максимальной концентрации людей).

Данный выбор (способ) не подходит для ЭАР, кроме последнего пункта, и вот почему. Под зоной прямого звука в контексте имеется в виду расстояние, не превышающее двойного размера источника звука. В под источниками звука (шума) подразумеваются машины, турбины, агрегаты и т. д. При использовании в качестве звукового источника даже самого большого громкоговорителя это расстояние не превысит 1 м, что не актуально.

В зоне отраженного звука. Здесь имеется в виду точка, расположенная, во-первых, вблизи отражающей поверхности и, во-вторых, максимально удаленная от источника звука. Выбор РТ вблизи отражающей поверхности объясняется спецификой акустического расчета как расчета именно для шумовых источников, для которых учитывается как энергия прямого звука, так и диффузионная энергия. При удалении от источника шума на расстояние, вдвое превышающее его размеры, начинает резко превалировать влияние диффузионной составляющей, см. далее формулу (7). Электроакустический же расчет, по своей специфике, близок к акустическому расчету, выполняемому для кинотеатров, концертных залов, в которых характерной информацией является музыка или речь. Такие расчеты для обеспечения надлежащей разборчивости выполняются с использованием так называемой геометрически-лучевой теории, позволяющей учитывать отражения и определять уровни прямого звука, приходящего (поступающего) в РТ. Согласно данной теории, известной еще древним грекам, звуковая энергия отождествляется с тонким лучом (света). При попадании на предметы часть звуковой энергии поглощается, а часть отражается под тем же самым углом.

В акустике под прямым звуком подразумевается как прямой звук - звук, распространяющийся напрямую от источника до РТ, так и первичные отражения - звук, поступающий в РТ, отразившись от поверхностей (площадок) не более 1 раза.

УРОВНИ ШУМА

Для выполнения ЭАР необходимо знать точное значение УШ. С определением УШ сопряжен ряд сложностей. Какую именно величину УШ необходимо использовать, на какой частоте его измерять и т. д.

Определить величину УШ можно несколькими способами:

■ непосредственным измерением;

■ из нормативных таблиц ;

■ дополнительными расчетами.

Относительно УШ имеется достаточно серьезная документация в виде , однако, например, проектировщики СОУЭ в своих расчетах на данный (подробный) СНиП не опираются. Отсутствие четких методик ЭАР не дает возможности подметить однозначную взаимосвязь между двумя величинами - необходимым уровнем звукового давления в РТ и УШ, определяемым в этой же точке. Это первое. Второе - в для определения УШ используется достаточно специфичный, непривычный для среднестатистического проектировщика СОУЭ расчетный аппарат, связанный с октавными уровнями, расчетом диффузионной энергии. Такие расчеты, как правило, выполняют специалисты по акустике, в то время как непосредственного требования выполнить ЭАР нет и он выполняется либо по требованию (по техническому заданию) заказчика, либо по желанию проектировщика. Непосредственное измерение УШ сопряжено с рядом сложностей. Во-первых, для такого измерения необходим профессиональный, а главное, поверенный измеритель УШ (шумомер). Во-вторых, измерение необходимо производить не только на различных частотах, но и в различные промежутки (отрезки) времени. Согласно , для производственных предприятий необходимо использовать период рабочей смены. При невозможности выполнить подобные измерения необходимо пользоваться уже имеющимися данными, взятыми из конструкторской документации или из ТЗ заказчика, а в случае их отсутствия необходимо обратиться к Шум-таблицам, например, СП 51.13330.2011. Защита от шума .

СПЕЦИФИКА ОПРЕДЕЛЕНИЯ ОКТАВНЫХ УРОВНЕЙ ШУМА

В указаны уровни для 9-октавных полос от 31,5 Гц до 8 кГц. Согласно пп. 5.1 расчет выполняется для 8-октавных полос от 63 Гц до 8 кГц. Согласно же , частотный диапазон 0,2-5 кГц вмещает лишь 5 полос со среднегеометрическими частотами -0,25/0,5/1/2/4 кГц. Данное расхождение преодолевается требованием выполнять расчет в дБА - уровнях звукового давления, скорректированных по шкале А. Можно показать, что суммарный эффект восприятия, с учетом корректировки по шкале А, 8-октавных (шумовых) полос практически равносилен восприятию 5-октавных полос, что дает нам право в ЭАР в качестве величины УШ использовать эквивалентные уровни непостоянного (прерывистого и колеблющегося во времени) звукового давления /L Аэкв, дБА, приведенные в и в .

УШ, взятые из Шум-таблиц, являются лишь обобщающими, их можно назвать собственными шумами. Так, например, согласно , для помещений с постоянными рабочими местами на производственных предприятиях /L Аэкв = 80 дБА. Однако для каждого конкретного предприятия необходимы дополнительные расчеты, учитывающие дополнительные, привнесенные шумы -шумы, возникающие в результате работы каких-либо источников шума - агрегатов, станков, или шумы, проникающие через окна, двери и т. д.

ПРИМЕРЫ АКУСТИЧЕСКИХ РАСЧЕТОВ, В УСЛОВИЯХ ВЫСОКОГО ШУМА

Рассмотрим пример. На рисунке 1 изображена элементарная ситуация - производственное помещение с двумя РТ и двумя звуковыми источниками: громкоговорителем и источником шума.

На рисунке изображены две расчетные точки РТ 1 и РТ 2 . Предположим, что в РТ 1 - влияние источника шума, изображенного в верхней правой части рисунка, в силу удаления и экранирования звукопоглощающей конструкцией не значительно.

Рис. 1. Пример, демонстрирующий особенности учета уровней шумов

УРОВЕНЬ ЗВУКОВОГО ДАВЛЕНИЯ В РАСЧЕТНОЙ ТОЧКЕ

Рассчитаем уровень звукового давления, дБ, в РТ, формируемого громкоговорителем :

L = P o + 10logР вт - 20log (r 1 - 1), (2)

r 1 - расстояние от источника звука (громкоговорителя) до РТ, м. При r o = 1 м, r > 2 м;

1 - коэффициент, учитывающий, что чувствительность громкоговорителя измерена на расстоянии 1 м.

КРИТЕРИИ РАСЧЕТА

Критерием правильности расчета будет выполнение следующих требований :

Звуковые сигналы СОУЭ должны обеспечивать общий уровень звука (уровень звука постоянного шума вместе со всеми сигналами, производимыми оповещателями) не менее 75 дБА на расстоянии 3 м от оповещателя, но не более 120 дБА в любой точке защищаемого помещения. Звуковые сигналы СОУЭ должны обеспечивать уровень звука не менее, чем на 15 дБА выше допустимого уровня звука постоянного шума в защищаемом помещении.

Данное требование содержит 3 условия:

1. Требование к минимальному уровню. Уровень звукового давления громкоговорителя должно быть не ниже 85 дБ:

Р дб > 85 дБ (3)

В случае невыполнения данного условия необходимо выбрать громкоговоритель с большим звуковым давлением.

2. Требование к максимальному уровню. Уровень звукового давления в РТ должно быть не выше 120 дБ:

(Р дб - 20log (r мин - 1))

r мин - расстояние от громкоговорителя до ближайшего слушателя.

В случае невыполнения данного условия можно уменьшить звуковое давление громкоговорителя или использовать распределенную схему расстановки громкоговорителей.

3. Условие правильности ЭАР:

L > УШ + 15, (5)

УШ - уровень шума в помещении, дБ;

15 - запас звукового давления, согласно , дБ.

В случае невыполнения данного условия можно:

■ выбрать громкоговоритель с большей чувствительностью Р o , дБ;

■ выбрать громкоговоритель с большей мощностью Р вт, Вт;

■ увеличить количество громкоговорителей;

■ изменить схему расстановки громкоговорителей.

УЧЕТ ДОПОЛНИТЕЛЬНОГО ШУМА

В РТ 2 влияние источника шума очевидно. Если уровень шума, создаваемый источником шума, УШ и, дБ в РТ, превосходит УШ, дБ в помещении УШ и УШ необходимо учитывать суммарное воздействие двух шумов УШ сум, дБ:

УШ сум = 10log (10 0,1УШ + 10 0,1УШи), (б)

и затем подставить полученный результат в формулу (5), приравняв УШ = УШ сум.

РАСЧЕТ ЗВУКОВОГО ДАВЛЕНИЯ В РАСЧЕТНОЙ ТОЧКЕ, ФОРМИРУЕМОГО ИСТОЧНИКОМ ШУМА

Из рисунка 1 видно, что источник звука находится на некотором расстоянии, r 3 , м, от РТ. Для расчета УШ и, дБ, воспользуемся результатами, изложенными в :

УШ и =Р ист + 10log (ΧΦ н /Ωr 2 2 + 4Ψ/В ), (7)

P ист - октавный (на частоте 1 кГц) уровень звуковой мощности звукового источника, дБ , берется из спецификаций или технических характеристик на оборудование;

Χ - коэффициент, учитывающий влияние ближнего поля в тех случаях, когда расстояние от источника шума, до РТ, r 3 таблице 2, );

Φ н - фактор направленности источника шума (для источников с равномерным излучением Ф = 1);

Ω - пространственный угол излучения источника, рад. (принимают по таблице 3, );

r 2 - расстояние от громкоговорителя до РТ, м;

Ψ - коэффициент, учитывающий нарушение диффузности звукового поля в помещении, таблица 1;

В - акустическая постоянная помещения, м 2 .

АКУСТИЧЕСКАЯ ПОСТОЯННАЯ ПОМЕЩЕНИЯ

Расчет акустической постоянной помещения В сопряжен с определением основного фонда звукопоглощения или эквивалентной площади звукопоглощения, А, м 2 , формула (3), .

Коэффициент, учитывающий нарушение диффузности звукового поля в помещении, - Ψ зависит от отношения постоянной помещения B к площади ограждающих поверхностей S, таблица 1:

Табл. 1. Коэффициент, учитывающий нарушение диффузности звукового поля помещений (Ψ)

Для приблизительного определения В можно воспользоваться следующей формулой: В = μ * В 1000 ,

В 1000 - постоянная помещения на частоте 1 кГц; μ - частотный множитель, таблица 2.

Табл. 2. Частотный множитель μ

Объем помещения, м 3

Среднегеометрическая частота, кГц

V = 200, 1000

V >> 1000

Постоянная помещения В 1000 для частоты 1 кГц в зависимости от объема помещения V, м 3 , определяется следующим способом:

В 1000 = V/20 - для помещений без мебели с небольшим количеством людей (металлообрабатывающие цеха, машинные залы, испытательные стенды и т. д.);

В 1000 = V/10 - для помещений с жесткой мебелью или с небольшим количеством людей и мягкой мебелью (лаборатории, кабинеты и т. д.);

В 1000 = V/6 - для помещений с большим количеством людей и мягкой мебелью (рабочие помещения административных зданий, жилые комнаты и т. п.);

В 1000 = V/1,5 - для помещений со звукопоглощающей облицовкой потолка и части стен.

Поясним, почему УШ, определяет точность расчетов. Для выбора параметров громкоговорителя или схемы их расстановки используется следующий подход (метод):

1. Выбираем РТ.

2. Определяем УШ в РТ.

3. Определяем ожидаемый уровень звукового давления в РТ.

4. Определяем место установки и расстояние до предполагаемого громкоговорителя.

5. Рассчитываем минимально необходимый уровень звукового давления предполагаемого громкоговорителя.

ДОПОЛНИТЕЛЬНЫЕ ОРГАНИЗАЦИОННЫЕ МЕРОПРИЯТИЯ

При высоких уровнях шумов возникает ситуация, когда использование громкоговорителя становится нерациональным. В этом случае на первый план выступают организационные мероприятия. Так, на основании :

В защищаемых помещениях, где люди находятся в шумо-защитном снаряжении, а также в защищаемых помещениях с уровнем звука шума более 95 дБА звуковые оповещатели должны комбинироваться со световыми оповещателями. Допускается использование световых мигающих оповещателей.

ЭФФЕКТИВНАЯ РАССТАНОВКА ГРОМКОГОВОРИТЕЛЕЙ

Для выполнения полноценного ЭАР одних нормативных требований крайне недостаточно, поэтому приходится вводить дополнительные характеристики. Продемонстрируем некоторые их них :

Ширина диаграммы направленности (ШДН) - угол раскрыва, определяемый из (круговой) диаграммы направленности громкоговорителя, при котором уровень звукового давления уменьшается на 6 дБ относительно рабочей (геометрической) оси громкоговорителя.

Эффективная дальность D, м, звучания громкоговорителя - расстояние от громкоговорителя до точки, звуковое давление r, дБ, в которой превышается УШ на 15 дБ.

Эффективную дальность можно определить как:

D = 10 1/20 (Рдб - УШ -15) + 1, (8) где

Р дб - звуковое давление, развиваемое громкоговорителем на определенной мощности, дБ.

1 - коэффициент, учитывающий, что чувствительность громкоговорителя определяется на 1 метре.

Оперирование приведенными характеристиками (параметрами) позволяет в зависимости от типов громкоговорителей - потолочный, настенный, рупорный - строить различные диаграммы - контуры озвучиваемых площадей. Так, например, для потолочного громкоговорителя эффективной озвучиваемой площадью (контуром) является площадь круга. Для ШДН = 90° радиус такого круга: R = H - 1,5 м, где Н -высота потолков . Для настенных или рупорных громкоговорителей актуальным параметром является эффективная дальность D , м.

ПРИМЕР АКУСТИЧЕСКОГО РАСЧЕТА ДЛЯ СКЛАДСКОГО ПОМЕЩЕНИЯ

На рисунке 2 изображена упрощенная схема складского помещения, для озвучивания которого используются три рупорных громкоговорителя.

Рупорные громкоговорители по сравнению с другими типами имеют ряд преимуществ:

■ класс защиты не ниже IP54 и могут использоваться в неотапливаемых помещениях;

■ высокое звуковое давление, позволяющее работать в условиях высоких шумов;

■ универсальное крепление, позволяющее варьировать результирующей диаграммой направленности. Расстановка громкоговорителей по одной стене (рис. 2),

имеет практическое основание, однако, его необходимо подтвердить расчетами.

ВОЗМОЖНЫЕ АЛГОРИТМЫ РАСЧЕТА

Алгоритм ЭАР (проверки) для РТ 1 может быть следующим:

1. Расчетная точка РТ 1 выбрана правильно - в месте, максимально удаленном от второго громкоговорителя ГР 2 .

2. Удостоверимся, что РТ 1 попадает в область действия диаграммы направленности (ШДН) второго громкоговорителя (ГР 2).

3. Определим УШ в РТ 1 .

4. Рассчитаем уровень звукового давления в РТ 1 , L 1 , дБ, по формуле (2).

5. Проверим выполнение граничных условий (3), (4), (5).

6. В случае выполнения условий (3), (4), (5) расчет для РТ 1 выполнен.

7. В случае невыполнения условий (3), (4), (5) выбирается другой громкоговоритель, меняется схема расстановки громкоговорителей, выполняются дополнительные организационные мероприятия.

Однако, обосновать ЭАР для РТ 1 можно более простым способом:

■ определяем эффективную дальность D , м, для второго громкоговорителя;

■ сравниваем полученное значение D , м, с расстоянием r 1 , м;

■ если D > r 1 , ЭАР для РТ 1 выполнен.

Для РТ 2 алгоритм ЭАР может быть следующим:

1. Расчетная точка РТ 2 выбрана правильно - в месте, наиболее критичном с точки зрения расположения громкоговорителей.

2. Определим УШ в РТ 2 .

3. Удостоверимся, что РТ 2 попадает в область действия диаграмм направленностей второго (ГР 2) или третьего (ГР 3) громкоговорителей.

4. Так как РТ 2 не попадает ни в одну из областей диаграмм, обратимся к геометрическо-лучевой теории.

5. Из рисунка 2 видно, что в РТ 2 попадают 2 луча звуковой энергии, формируемые ГР 2 и ГР 3 и отраженные от второго стеллажа.

Рис. 2. Пример расстановки громкоговорителей для складского помещения

б. Уровень звукового давления L 2 , дБ, в РТ 2 может быть рассчитан следующим способом:

■ рассчитаем уровень звукового давления в точке А, L А, дБ, по формуле (2);

■ рассчитаем уровень звукового давления в точке Б, L Б, дБ, по следующей формуле:

L Б = L А - 20logr 3 + 10log(1 - К погл),

К погл - коэффициент поглощения отражающей поверхности;

■ аналогичным образом рассчитаем уровень звукового давления, формируемый третьим громкоговорителем (ГР 3) в точках В, L B , дБ, и Г, L Г, дБ;

■ рассчитаем уровень звукового давления в РТ 2 , L 2 , дБ: L 2 = 10log (10 0,1LБ + 10 0,1Lг).

ОРГАНИЗАЦИОННЫЕ МЕРОПРИЯТИЯ

Защита от шума строительно-акустическими методами должна обеспечиваться:

■ рациональным с акустической точки зрения решением генерального плана объекта, рациональным архитектурно-планировочным решением зданий;

■ применением ограждающих конструкций зданий с требуемой звукоизоляцией;

■ применением звукопоглощающих конструкций (звукопоглощающих облицовок, кулис, штучных поглотителей);

■ применением звукоизолирующих кабин наблюдения и дистанционного управления;

■ применением звукоизолирующих кожухов на шумных агрегатах;

■ применением акустических экранов;

■ применением глушителей шума в системах вентиляции, кондиционирования воздуха и в аэрогазодинамических установках;

■ виброизоляцией технологического оборудования.

В проектах должны быть предусмотрены мероприятия по защите от шума:

■ в разделе «Технологические решения» (для производственных предприятий)при выборе технологического оборудования следует отдавать предпочтение малошумному оборудованию;

■ размещение технологического оборудования должно осуществляться с учетом снижения шума на рабочих местах, в помещениях и на территориях путем применения рациональных архитектурно-планировочных решений;

■ в разделе «Строительные решения» (для производственных предприятий) на основе акустического расчета ожидаемого шума на рабочих местах должны быть, в случае необходимости, рассчитаны и запроектированы строительно-акустические мероприятия по защите от шума;

■ шумовые характеристики технологического и инженерного оборудования должны содержаться в его технической документации и прилагаться к разделу проекта «Защита от шума»;

■ следует учитывать зависимость шумовых характеристик от режима работы, выполняемой операции, обрабатываемого материала и т. п.;

возможные варианты шумовых характеристик должны быть отражены в технической документации оборудования.

В КАЧЕСТВЕ ЗАКЛЮЧЕНИЯ

Мы рассмотрели только часть вопросов, касающихся акустических расчетов. Отдельного рассмотрения требуют вопросы расстановки громкоговорителей, определения времени реверберации помещения, расчета разборчивости. Приведем некоторые рекомендации, касающиеся повышения общей разборчивости речи .

1. Наибольшее влияние на разборчивость речи оказывают естественные шумы.

2. Существенное влияние на разборчивость речи оказывают реверберационные помехи, снижение которых достигается дополнительными (специальными) мероприятиями.

3. Хорошая разборчивость в реверберирующих помещениях с ограниченным звуковым трактом может быть достигнута при разнице между звуковым давлением в РТ и уровнем шума не меньше 6 дБ.

4. На разборчивость существенное влияние оказывает качество выбираемых громкоговорителей. При неравномерности АЧХ громкоговорителя, приближающейся к 10%, разборчивость ухудшается на 7%.

5. Существенное повышение речевой разборчивости может быть достигнуто увеличением доли прямого звука в суммарной звуковой энергии внутри помещения, за счет:

■ повышения локализации звуковых источников;

■ грамотной расстановки звуковых источников (громкоговорителей), учитывающей их направленности и расположение, при котором РТ-точка не сильно удалена от источника и не находится в тени.

ЛИТЕРАТУРА

1. ФЗ № 123, свод правил СП 3.13130.2009. Требования пожарной безопасности к звуковому и речевому оповещению и управлению эвакуацией людей.

2. ФЗ № 123, свод правил СП 133.13330.2012. (Приложение А. Упрощенный расчет числа громкоговорителей в системах оповещения).

3. Кочнов О. В. Электроакустический расчет, выполняемый при проектировании СОУЭ// Материалы XVнаучно-практической конференции «Интеграция науки и практики как механизм развития современного общества». 8-9 апреля 2015.

4. СП 51.13330.2011. Защита от шума. Актуализированная редакция СНиП 23-03-2003. М., 2011.

5. СНиП 23-03-2003. Защита от шума (Sound protection) от 01-01-2004.

6. Кочнов О. В. Расчет разборчивости речи // Материалы XVIII научно-практической конференции «Интеграция науки и практики как механизм развития современного общества». 28-29 декабря 2015.