Люминесцентная лампа принцип работы. Какие преимущества имеет люминесцентная подсветка для кухни. Разновидности освещения

С того момента, когда появились первые лампы накаливания, прошло больше века. Прогресс не стоит на месте, а потому сейчас для освещения мы все чаще используем не эти устройства, а их современные и более экономичные потомки. Популярностью пользуются люминесцентные лампы, купить в Москве которые вы можете в сети магазинов «Престиж».

Основные преимущества

Лампы этого типа - одна из разновидностей газоразрядных ламп, имеющая ряд принципиальных преимуществ перед обычными (накаливания):

  • большая световая отдача, при аналогичной мощности (люминесцентные лампы 40 Вт светят намного ярче, чем лампочки накаливания);
  • большой срок службы. Люминесцентные лампы, цена которых сейчас не намного больше привычных лампочек, служат намного дольше.;
  • использование люминофора. Это позволяет использовать лампы люминесцентные для формирования света строго заданного спектра. Цвет, которым светят линейные люминесцентные лампы зависит от люминофора, а значит, можно получить практически полноценный спектр дневного света или люминесцентную лампу накаливания (спектр будет аналогичен обычной лампочке).

Энергосберегающие люминесцентные лампы e27

За счет своих несомненных достоинств эти осветительные приборы широко используются в общественных учреждениях, в том числе медицинских и учебных. Стандартом в этом случае считается лампа люминесцентная 36 и 40 Вт. А вот в домах чаще используются энергосберегающие лампы, имеющие стандартный цоколь, в основном Е27 и Е14.

Экономия прежде всего

Низкое потребление энергии, снижение затрат на оплату электричества, спектр света, максимально приближенный к дневному - все это преимущества, которые вам дают люминесцентные лампы. Купить можно как энергосберегающие, так и обыкновенные модификации, все равно эффект будет заметен. Лампа люминесцентная 18 вт позволит вам снизить затраты, получить экономию и при этом обеспечит достаточную освещенность.

Например:специалисты, покупающие у нас для офисов и производственных помещений люминесцентные лампы e27 ставят их в коридорах с постоянно включенным освещением и получают солидную экономию.

Полный ассортимент продукции

Наш интернет магазин «Престиж» предлагает покупателям полный спектр современных ламп освещения. Разумеется, предлагаем мы и люминесцентные лампы всех типов. Вы можете выбрать лампы 18w люминесцентные энергосберегающего типа, под офисные светильники. Наши онлайн менеджеры при необходимости подскажут:

  • в каком разделе магазина находится люминесцентная лампа g5;
  • как правильно и в каких светильниках эксплуатируется лампа люминесцентная g13;
  • дадут советы по использованию энергосберегающих ламп и их соответствию светимости привычных ламп накаливания;
  • расскажут про преимущества ламп Navigator и помогут решить все остальные вопросы по вашему заказу, обращайтесь!

Грамотно подобранная и правильно выполненная подсветка - один из способов формирования уютной, гармоничной и благоприятной атмосферы. И важным шагом в этом вопросе является выбор осветительного оборудования. Одним из оптимальных экономичных, практичных и эстетичных вариантов являются люминесцентные лампы.

Внешний вид лампы люминесцентного типа позволяет разрушить стереотип, исходя их которого осветительный прибор - громоздкая люстра, прикрепленная к центру потолка. Подсветка для кухни может быть выполнена в разных вариантах: иметь вытянутую или цилиндрическую фору, включать в себя один или множество ламп, быть встраиваемого или накладного типа.

Строение люминесцентной лампы

Корпус лампы изготавливается из стали листового типа, поверхность которой покрывается специальным порошковым или полимерным покрытием. В конструкции светильника предусмотрены также такие составляющие, как дроссель, стартеры и конденсаторы, держатели и крепежи. Для рассеивания потока света используется растровая решетка либо же «световые балки». Что касается показателей мощности, то они варьируются в рамках 6-36 Ватт.

С учетом типа монтажа кухонные люминесцентные лампы можно классифицировать на такие категории:

  • встраиваемые осветительные приборы, это небольшие лампочки, которые монтируются в предметы мебели;
  • накладные лампы, такая люминесцентная подсветка для кухни отличается максимальной световой производительностью и компактными габаритами. Это делает ее оптимальным вариантом для помещения небольшой площади;


  • подвесные светильники, которые идеально подходят для кухонь с высокими потолками. Для их установки используются специальные тросы, что позволяют регулировать высоту расположения лампы;


  • растровые осветительные приборы, что могут иметь самую разную форму корпуса. люминесцентная растровая подсветка для кухни может быть открытого и закрытого, статичного и поворотного типа, прямоугольной и квадратной формы, оснащаться рассеивателями или не иметь их в своей конструкции.


С учетом типа подключения лампы люминесцентные делятся на такие виды:

  • транзитные, для их подсоединения используется последовательный тип подключения, когда на одну линию подключается до 10 лампочек. Для этого используется специальный переходник. Минимум проводов - основной плюс транзитного люминесцентного освещения для кухни;
  • нетранзитные, иначе говоря тупиковые лампы, каждая из которых имеет свой провод и включается в отдельный источник питания.

На рынке осветительного оборудования представлен еще один тип люминесцентных ламп, которые имеют степень защиты IP.

Буквосочетание «IP» имеет двухзначный цифровой показатель. Первая цифра измеряет степень защиты в случае попадания твердых частиц, вторая - свидетельствует влагоустойчивости. Стоимость ***люминесцентной подсветки типа «IP» для кухни*** несколько выше стандартных ламп, но это идеальный практичный и долговечный вариант для кухонного помещения, где всегда нестабильный уровень влажности.

Какие плюсы имеет люминесцентный тип освещения

В пользу люминесцентной подсветки для кухни говорят многие положительные характеристики этого типа ламп.

В их числе такие преимущества:

  • Экономичность. Для комплектации люминесцентных светильников используются лампы энергосберегающего типа. Благодаря чему удается снизить уровень энергозатрат до 80%. Это в свою очередь сокращает финансовые расходы на коммунальные услуги. Таким образом окупаются осветительные приборы в скорые сроки.
  • Яркость. Светят такие лампы в пять раз ярче стандартных осветительных приборов. Для кухонного помещения оптимальным считается освещение с равномерным, немерцающим, ярким световым потоком. Люминесцентные светильники отвечают этим требованиям и станут идеальным типом подсветки. Такое освещение не напрягают зрение и передают все тонкости и особенности кухонного интерьера.
  • Долговечность. Данный тип подсветки отличается бесперебойным и длительным сроком службы. Их эксплуатационный период в 10 раз выше срока службы обычной лампы.
  • Универсальность. Люминесцентные осветительные приборы могут быть использованы как в качестве основного кухонного освещения, так и для формирования дизайнерского светового оформления. Разнообразие форм, типов, размеров, характеристик мощности этих световых элементов позволяет подобрать оптимальное освещение для любого интерьера, кухни любой планировки и размера.
  • Простота установки. Монтаж люминесцентного освещения не требует специальных знаний и навыков. Без сторонней помощи специалистов, имея стандартный набор инструментов, установку ламп можно провести своими руками.
  • Наличие моделей с датчиками движений. Это идеальное решение для мобильных современных людей, которые ценят инновации и комфорт.
  • Невысокая стоимость. Пока люминесцентные осветительные приборы только внедряются на потребительский рынок, цена на них остается доступной. Это невысокая плата за выгодные, эстетичные, долговечные осветительные приборы.


Идеи использования люминесцентного типа освещения в кухонном интерьере

Область у плиты, мойки, стола - те рабочие зоны, которые требуют хорошего освещения. Если люминесцентная подсветка для кухни будет оформлена в виде фартука на стене, то это может стать отменным выходом из ситуации. Разместить его можно как на потолочной поверхности, так на нижней наружной стенке навесных шкафчиков. Если использовать при этом лампочки определенных цветов, можно внести нотки изящества, гармонии, эффектности в кухонный интерьер.


Еще одним вариантом размещения люминесцентных осветительных элементов - монтирование их в многоярусный потолок. Для такой модели освещения больше подойдут растровые либо подвесные типы светильников. Лампы подвесного типа гармонично смотрятся только на высоких потолках, в формировании интерьера маленькой кухни их лучше не использовать.

Если Вам нужно оформить маленькую кухню подвесными осветительными элементами, используйте модели светильников имеющие функцию регулировки подвеса. Это позволит самостоятельно варьировать высотой осветительных элементов.

Люминесцентная лампа

Различные виды люминесцентных ламп

Люминесце́нтная лампа - газоразрядный света , в котором видимый свет излучается в основном люминофором , который, в свою очередь, светится под воздействием ультрафиолетового излучения разряда; сам разряд тоже излучает видимый свет, но в значительно меньшей степени.

Преимущества и недостатки

Популярность люминесцентных ламп обусловлена их преимуществами (над лампами накаливания):

К недостаткам относят:

  • наличие дополнительного приспособления для пуска лампы - пускорегулирующего аппарата (громоздкий шумный дроссель с ненадёжным стартером или же ЭПРА);
  • мерцание лампы с частотой питающей сети (нивелируется применением ЭПРА);
  • вышедший из строя стартёр вызывает фальстарт лампы (визуально определяется несколько вспышек перед стабильным зажиганием), сокращая срок службы нитей накала;
  • очень низкий коэффициент мощности ламп - такие лампы являются неудачной для электросети нагрузкой;
Существуют и более мелкие недостатки .

История

Первым предком лампы дневного света были газоразрядные лампы. Впервые свечение газов под воздействием электрического тока наблюдал Михаил Ломоносов, пропуская ток через заполненный водородом стеклянный шар. Считается что первая газоразрядная лампа изобретена в 1856 году. Генрих Гайсслер получил синее свечение от заполненной газом трубки, которая была возбуждена при помощи соленоида. 23 июня 1891 года Никола Тесла запатентовал систему электрического освещения газоразрядными лампами (патент № 454,622), которая состояла из источника высокого напряжения высокой частоты и газоразрядных аргоновых ламп запатентованных им ранее (патент № 335,787 от 9 февраля 1886 г. выдан United States Patent Office). Аргоновые лампы используются и в настоящее время. В 1893 году на всемирной выставке в Чикаго, штат Иллинойс, Томас Эдисон показал люминесцентное свечение. В 1894 году М. Ф. Моор создал лампу, в которой использовал азот и углекислый газ, испускающий розово-белый свет. Эта лампа имела умеренный успех. В 1901, Питер Купер Хьюитт демонстрировал ртутную лампу, которая испускала свет сине-зелёного цвета, и таким образом была непригодна в практических целях. Однако, её конструкция была очень близка к современной, и имела намного более высокую эффективность, чем лампы Гайсслера и Эдисона. В 1926 году Эдмунд Гермер (Edmund Germer) и его сотрудники предложили увеличить операционное давление в пределах колбы и покрывать колбы флуоресцентным порошком, который преобразовывает ультрафиолетовый свет, испускаемый возбуждённой плазмой в более однородно бело-цветной свет. Э.Гермер в настоящее время признан как изобретатель лампы дневного света. General Electric позже купила патент Гермера, и под руководством Джорджа Э. Инмана довела лампы дневного света до широкого коммерческого использования к 1938 году. В СССР первые люминесцентные лампы были разработаны под руководством академика С. И. Вавилова В. А. Фабрикантом , Ф. А. Бутаевой и др .

Принцип работы

При работе люминесцентной лампы между двумя электродами, находящимися в противоположных концах лампы, возникает тлеющий разряд . Лампа заполнена инертным газом и парами ртути, проходящий ток приводит к появлению УФ излучения. Это излучение невидимо для человеческого глаза, поэтому его преобразуют в видимый свет с помощью явления люминесценции . Внутренние стенки лампы покрыты специальным веществом - люминофором , которое поглощает УФ излучение и излучает видимый свет. Изменяя состав люминофора, можно менять оттенок свечения лампы. В качестве люминофора используют в основном галофосфаты кальция и ортофосфаты кальция-цинка.

Маркировка

Трёхцифровой код на упаковке лампы содержит как правило информацию относительно качества света (индекс цветопередачи и цветовой температуры).

Первая цифра - индекс цветопередачи в 1х10 Ra (компактные люминесцентные лампы имеют 60-98 Ra, таким образом чем выше индекс, тем достоверней цветопередача)

Вторая и третья цифры - указывают на цветовую температуру лампы.

Таким образом маркировка «827» указывает на индекс цветопередачи в 80 Ra, и цветовую температуру в 2700 (что соответствует цветовой температуре лампы накаливания)

Кроме того, индекс цветопередачи может обозначаться в соответствии с DIN 5035, где диапазон цветопередачи 20-100 Ra поделён на 6 частей- от 4 до 1А. (нем.)

Особенности восприятия

Цветовосприятие человека сильно изменяется в зависимости от яркости. При небольшой яркости мы лучше видим синий и хуже красный. Поэтому цветовая температура дневного света (5000-6500K) в условия низкой освещённости будет казаться чрезмерно синей. Средняя освещённость жилых помещений - 75 люкс, в то время как в офисах и других рабочих помещениях - 400 люкс. При небольшой яркости (50-75 люкс) наиболее естественным выглядит свет с температурой 3000K. При яркости в 400 люкс такой свет уже кажется жёлтым, а наиболее естественным кажется свет с температурой 4000-6000K.

Международная маркировка по цветопередаче и цветовой температуре

Код Определение Особенности Применение
530 Basic warmweiß / warm white Свет тёплых тонов с плохой цветопередачей. Объекты кажутся коричневатыми и малоконтрастными. Посредственная светоотдача. Гаражи, кухни. В последнее время встречается всё реже.
640/740 Basic neutralweiß / cool white «Прохладный» свет с посредственной цветопередачей и светоотдачей Весьма распространён, должен быть заменён на 840
765 Basic Tageslicht / daylight Голубоватый «дневной» свет с посредственной цветопередачей и светоотдачей Встречается в офисных помещениях и для подсветки рекламных конструкций (ситилайтов)
827 Lumilux interna Похожий на свет лампы накаливания с хорошей цветопередачей и светоотдачей Жильё
830 Lumilux warmweiß / warm white Похожий на свет галогеновой лампы с хорошей цветопередачей и светоотдачей Жильё
840 Lumilux neutralweiß / cool white Белый свет для рабочих поверхностей с очень хорошей цветопередачей и светоотдачей Общественные места, офисы, ванные комнаты, кухни. Внешнее освещение
865 Lumilux Tageslicht / daylight «Дневной» свет с хорошей цветопередачей и посредственной светоотдачей Общественные места, офисы. Внешнее освещение
880 Lumilux skywhite «Дневной» свет с хорошей цветопередачей Внешнее освещение
930 Lumilux Deluxe warmweiß / warm white «Тёплый» свет с отличной цветопередачей и плохой светоотдачей Жильё
940 Lumilux Deluxe neutralweiß / cool white «Холодный» свет с отличной цветопередачей и посредственной светоотдачей. Музеи, выставочные залы
954, 965 Lumilux Deluxe Tageslicht / daylight «Дневной» свет с непрерывным спектром цветопередачи и посредственной светоотдачей Выставочные залы, освещение аквариумов

Маркировка цветопередачи по ГОСТ 6825-91*


Люминесцентная лампа производства СССР мощностью 20 Вт(«ЛД-20»). Зарубежный аналог этой лампы - TLD 20W

В соответствии с ГОСТ 6825-91* (МЭК 81-84) «Лампы люминесцентные трубчатые для общего освещения», действующий, лампы люминесцентные линейные общего назначения маркируются, как:

  • ЛБ (белый свет)
  • ЛД (дневной свет)
  • ЛЕ (естественный свет)
  • ЛХБ (холодный свет)
  • ЛТБ (тёплый свет)

Добавление буквы Ц в конце означает применение люминофора «де-люкс» с улучшенной цветопередачей, а ЦЦ - люминофора «супер де-люкс» с высококачественной цветопередачей.

Лампы специального назначения маркируются, как:

Параметры выпускавшихся в СССР ламп по цветопередаче приведены в таблице:

Аббревиатура Расшифровка Оттенок Цветовая т-ра, К Назначение Цветопередача Примерный эквивалент по международной маркировке
Лампы дневного света
ЛДЦ, ЛДЦЦ Лампы дневного света, с улучшенной цветопередачей; ЛДЦ - де-люкс, ЛДЦЦ - супер-де-люкс Белый с лёгким голубоватым оттенком и относительно низкой светоотдачей 6500 Для музеев , выставок , в фотографии , в производственных и административных помещениях с повышенными требованиями к цветопередаче, образовательных учреждениях , жилых помещениях Хорошая (ЛДЦ), отличная (ЛДЦЦ) 865 (ЛДЦ),
965 (ЛДЦЦ)
ЛД Лампы дневного света Белый с лёгким голубоватым оттенком и высокой светоотдачей 6500 В производственных и административных помещениях без высоких требований к цветопередаче Приемлемая 765
Лампы естественного света
ЛЕЦ, ЛЕЦЦ Лампы естественного света, с улучшенной цветопередачей; ЛЕЦ - де-люкс, ЛЕЦЦ - супер-де-люкс Солнечно-белый с относительно низкой светоотдачей 4000 Для музеев, выставок, в фотографии, в образовательных учреждениях, жилых помещениях Приемлемая (ЛЕЦ), хорошая (ЛЕЦЦ) 754 (ЛЕЦ),
854 (ЛЕЦЦ)
ЛЕ Лампы естественного света Белый без оттенка и высокой светоотдачей 4000 Неудовлетворительная 640
Другие осветительные лампы
ЛБ Лампы белого света Белый с лиловатым оттенком, плохой цветопередачей и высокой светоотдачей 3500 В помещениях, где нужен яркий свет и не требуется цветопередача: производственных и административных помещениях, в метрополитене Неудовлетворительная 635
ЛХБ Лампы холодно-белого света Белый с заметным голубым оттенком 4850 Неудовлетворительная 685
ЛТБ Лампы тёпло-белого света Белый с «тёплым» розовым оттенком, для освещения помещений, богатых бело-розовыми тонами 2700 В продовольственных магазинах , предприятиях общественного питания Относительно приемлемая для тёплых тонов, неудовлетворительная для холодных 530, 630
ЛТБЦ Лампы тёпло-белого света с улучшенной цветопередачей Белый с «тёплым» розовым оттенком 2700 Такое же, как и для ЛТБ, а также для жилых помещений. Приемлемая для тёплых тонов, менее удовлетворительная для холодных 730
Лампы специального назначения
ЛГ, ЛК, ЛЗ, ЛЖ, ЛР, ЛГР Лампы с цветным люминофором ЛГ - голубой,
ЛК - красный,
ЛЗ - зелёный,
ЛЖ - жёлтый,
ЛР - розовый,
ЛГР - лиловый
- Для светового дизайна , художественной подсветки зданий, вывесок, витрин - ЛГ: 67, 18, BLUE
ЛК: 60, 15, RED
ЛЗ: 66, 17, GREEN
ЛЖ: 62, 16, YELLOW
ЛСР Лампы синие рефлекторные Лампы ярко-синего света - В электрофотографических копировально-множительных аппаратах - -
ЛУФ Ультрафиолетовые лампы Лампы тёмно-синего света с выраженной ультрафиолетовой компонентой - Для ночной подсветки и дезинфекции в медицинских учреждениях , казармах и т. д., а также в качестве «чёрного света» для светового дизайна в ночных клубах , на дискотеках и т. п. - 08

Особенности подключения


Дешёвый вариант электронного подключения

Люминесцентная лампа, в отличие от лампы накаливания, не может быть включена напрямую в электрическую сеть. Причин для этого две:

  • Для зажигания дуги в люминесцентной лампе требуется импульс высокого напряжения.
  • Люминесцентная лампа имеет отрицательное дифференциальное сопротивление , после зажигания лампы ток в ней многократно возрастает. Если его не ограничить, лампа выйдет из строя.

Для решения этих проблем применяют специальные устройства - балласты. Наиболее распространённые на сегодняшний день схемы: электромагнитный балласт с неоновым стартером и различные разновидности электронных балластов.

Электромагнитный балласт


Электромагнитный балласт «1УБИ20» серии 110 завода ВАТРА, СССР.


Современный Электромагнитный балласт «L36A-T» завода Helvar, Финляндия.

Электромагнитный балласт представляет собой электромагнитный дроссель , подключаемый последовательно с лампой. Последовательно нитям лампы подключается стартер, представляющий собой неоновую лампу с биметаллическими электродами и конденсатор. Дроссель формирует за счёт самоиндукции запускающий импульс, а также ограничивает ток через лампу. В настоящее время преимуществами электромагнитного балласта являются простота конструкции, надёжность и низкая стоимость. Недостатков же такой схемы достаточно много:

  • Долгий запуск (1-3 сек в зависимости от степени износа лампы);
  • Большее потребление энергии, чем у электронной схемы - при напряжении 220 Вольт светильник 2 по 58 Ватт = 116 Ватт потребляет 130 Ватт;
  • Малый cos φ =0.5 (без компенсирующих конденсаторов);
  • Низкочастотный гул (100Гц), исходящий от дросселя, возрастающий со старением дросселя;
  • Мерцание лампы с удвоенной частотой сети, которое может повредить зрение, а иногда бывает опасным (из-за стробоскопического эффекта вращающиеся синхронно с частотой сети предметы могут казаться неподвижными. Поэтому люминесцентные лампы с электромагнитным балластом не рекомендуется применять для освещения подвижных частей станков и механизмов);
  • Большие габариты и масса;
  • При температуре ниже 10 °C яркость лампы значительно снижается ввиду уменьшения давления газа в лампе;
  • При отрицательных температурах лампы по классической схеме могут не зажигаться вообще, при этих условиях применяются автотрансформаторы.

Электронный балласт

Электронный балласт подаёт на электроды лампы напряжение не с частотой сети, а высокочастотное (25-133 кГц), в результате чего заметное для глаз мигание ламп исключено. Однако высокочастотные колебания, проходя через лампу, как антенну, создают электромагнитные помехи в широком спектре, поэтому радиодиапазон ДВ - длинные волны, начинающийся с 150 кГц, стал не пригоден для использования, но аргументировали это тем, что невыгодно строить антенны большого размера и перешли на диапазон УКВ, волны которого распространяются только в пределах прямой видимости и нужны повторители-репитеры.

Может использоваться один из двух вариантов запуска ламп:

  • Холодный запуск - при этом лампа зажигается сразу после включения. Такую схему лучше использовать в случае, если лампа включается и выключается редко, так как режим холодного пуска более вреден для электродов лампы.
  • Горячий запуск - с предварительным прогревом электродов. Лампа зажигается не сразу, а спустя 0,5-1 сек, зато срок службы увеличивается, особенно при частых включениях и выключениях.

Потребление электроэнергии люминесцентными светильниками при использовании электронного балласта обычно на 20-25 % ниже. Материальные затраты (медь, железо) на изготовление и утилизацию меньше в несколько раз. Использование централизованных систем освещения с автоматической регулировкой позволяет сэкономить до 85 % электроэнергии. Существуют электронные балласты с возможностью диммирования (регулировки яркости) путём изменения скважности тока питания лампы.

Механизм запуска лампы с электромагнитным балластом


В классической схеме включения с электромагнитным балластом для автоматического регулирования процесса зажигания лампы применяется пускатель (стартер), представляющий собой миниатюрную газоразрядную лампу, обычно неоновую. Один электрод стартера неподвижный жёсткий, другой - биметаллический, изгибающийся при нагреве. Есть также стартеры и с двумя гибкими электродами (симметричные). В исходном состоянии электроды стартера разомкнуты. Стартер подключен параллельно лампе так, чтобы при замыкании его электродов ток проходил через спирали лампы.

В момент включения к электродам лампы и стартера прикладывается полное напряжение сети, так как ток через лампу отсутствует и падение напряжения на дросселе равно нулю. Электроды лампы холодные, разряд отсутствует, и напряжения сети недостаточно для её зажигания. Но в стартере от приложенного напряжения возникает тлеющий разряд, и ток проходит через электроды лампы и стартера. Ток разряда мал для разогрева электродов лампы, но достаточен для разогрева электродов стартера, отчего биметаллическая пластинка, изгибается и замыкается с жёстким электродом. Ток течет через электроды лампы и разогревает их. Когда электроды стартера остывают, цепь размыкается, и благодаря самоиндукции происходит бросок напряжения на дросселе, необходимый для зажигания разряда. Параллельно стартеру подключен миниатюрный конденсатор небольшой емкости, служащий для обеспечения условия возникновения резонанса тока совместно с индуктивностью дросселя и, вследствие, зажигания лампы. При отсутствии конденсатора этот импульс будет слишком коротким, а амплитуда слишком большой, и энергия, накопленная в дросселе, израсходуется на разряд в стартере. К моменту размыкания стартера электроды лампы уже достаточно разогреты, но в лампе ещё не вся ртуть испарилась и разряд проходит в атмосфере аргона , из-за чего разряд в лампе неустойчивый и процесс запуска может повториться неоднократно. Как только вся ртуть в колбе лампы испаряется в достаточном количестве, лампа выходит на рабочий режим.

Рабочее напряжение лампы ниже сетевого за счёт падения напряжения на дросселе, поэтому повторного срабатывания стартера не происходит. В процессе зажигания лампы стартер иногда срабатывает несколько раз подряд, если он размыкается в момент, когда мгновенное значение тока дросселя равно нулю, либо электроды лампы ещё недостаточно разогреты. По мере износа рабочее напряжение растёт, количество циклов срабатывания стартера увеличивается, и в конце концов лампа уже не может выйти на рабочий режим. Это вызывает характерное мигание вышедшей из строя лампы. Когда лампа гаснет, можно видеть свечение катодов, разогретых током, протекающим через стартер.

Механизм запуска лампы с электронным балластом

В отличие от электромагнитного балласта для работы электронного балласта обычно не требуется отдельный специальный стартер, так как такой балласт в общем случае способен сформировать необходимые последовательности напряжений сам. Существуют различные способы запуска люминесцентных ламп. Чаще всего электронный балласт подогревает катоды ламп и прикладывает к катодам напряжение, достаточное для зажигания лампы, обычно - переменное и более высокой частоты, чем сетевое (что заодно устраняет мерцание лампы, характерное для электромагнитных балластов). В зависимости от конструкции балласта и временных параметров последовательности запуска лампы такие балласты могут обеспечивать, например, плавный запуск лампы с постепенным нарастанием яркости до полной за несколько секунд или же мгновенное включение лампы. Часто встречаются комбинированные методы запуска, когда лампа запускается не только за счет факта подогрева катодов лампы, но и за счет того, что цепь, в которую включена лампа, является колебательным контуром. Параметры колебательного контура подбираются так, что при отсутствии разряда в лампе в контуре возникает явление электрического резонанса , ведущее к значительному повышению напряжения между катодами лампы. Как правило, это ведет и к росту тока подогрева катодов, поскольку при такой схеме запуска спирали накала катодов нередко соединены последовательно через конденсатор, являясь частью колебательного контура. В результате за счет подогрева катодов и относительно высокого напряжения между катодами лампа легко зажигается. После зажигания лампы параметры колебательного контура изменяются, добротность уменьшается и ток в контуре значительно падает, уменьшая нагрев катодов. Существуют вариации данной технологии. Например, в предельном случае балласт может вообще не подогревать катоды, вместо этого приложив достаточно высокое напряжение к катодам, что неизбежно приведет к почти мгновенному зажиганию лампы за счет пробоя газа между катодами. По сути этот метод аналогичен технологиям, применяемым для запуска ламп с холодным катодом (CCFL). Данный метод достаточно популярен у радиолюбителей, поскольку позволяет запускать даже лампы с перегоревшими нитями накала катодов, которые не могут быть запущены обычными методами из-за невозможности подогрева катодов. В частности, этот метод нередко используется радиолюбителями для ремонта компактных энергосберегающих ламп, которые являются обычными люминесцентными лампами со встроенным электронным балластом в компактном корпусе. После небольшой переделки балласта такая лампа может ещё долго служить невзирая на перегорание спиралей подогрева, и её срок службы будет ограничен только временем до полного распыления электродов.

Причины выхода из строя


Проверка электродов одной стороны на целостность. Сопротивление 9,9Ω говорит о том, что нить электрода на этой стороне цела.


Проверка электродов одной стороны на целостность. Бесконечно большое сопротивление говорит о том, что нить электродов разорвана. Вторым признаком является потемнение вблизи электрода.

Электроды люминесцентной лампы представляют собой вольфрамовые нити, покрытые пастой (активной массой) из щелочноземельных металлов. Эта паста и обеспечивает стабильный разряд и предохраняет вольфрамовые нити от перегрева. В процессе работы она постепенно осыпается с электродов, выгорает и испаряется. Особенно интенсивно она осыпается во время запуска, когда некоторое время разряд происходит не по всей площади электрода, а на небольшом участке его поверхности, что приводит к локальным перепадам температур. Поэтому люминесцентные лампы всё же имеют конечный срок службы (он зависит главным образом от качества изготовления электродов, скорости зажигания), хотя он и больший, чем у обычных ламп накаливания, у которых спираль с постоянной скоростью испаряется. Отсюда потемнение на концах лампы, которое усиливается ближе к окончанию срока службы. Когда паста выгорит полностью, ток лампы начинает падать, а напряжение, соответственно, возрастать.

Выход из строя ламп с электромагнитным балластом

Повышение напряжения на лампе в процессе её старения приводит к тому, что начинает постоянно срабатывать стартер - отсюда всем известное мигание вышедших из строя ламп. При этом электроды лампы постоянно разогреваются, и в конце концов (примерно через 2 - 3 дня мигания) одна из нитей перегорает. Затем минуту-две лампа горит без мерцания, разряд исходит от остатков перегоревшего электрода, на котором уже нет пасты из щелочноземельных металлов, остался только вольфрам. Эти остатки вольфрамовой нити очень сильно разогреваются, из-за чего частично испаряются, либо осыпаются, после этого разряд переходит на траверсу (проволоку, к которой крепится вольфрамовая нить с активной массой), она частично оплавляется и лампа вновь начинает мерцать. Если её выключить, она больше не загорится. При этом из-за длительной работы в непрерывном режиме часто выходит из строя и стартер, так что при замене лампы приходится менять и его тоже. При выходе из строя стартера из-за плохого качества (замыкание биметаллических контактов или пробой конденсатора) электроды лампы разогреваются и через несколько дней перегорают. При пробое дросселя лампа сгорает мгновенно.

Выход из строя ламп с электронным балластом

В процессе старения лампы постепенно выгорает активная масса электродов, после чего нити разогреваются и перегорают. В качественных балластах предусмотрена схема автоматического отключения перегоревшей лампы. В некачественных ЭПРА подобная защита отсутствует, и после повышения напряжения лампа погаснет, а в цепи наступит резонанс, приводящий к значительному возрастанию тока и перегоранию транзисторов балласта.

Также нередко в балласты низкого качества (обычно на компактных люминесцентных лампах со встроенным балластом) на выходе устанавливается конденсатор , рассчитанный на напряжение, близкое к рабочему напряжению новой лампы. По мере старения лампы напряжение повышается и в конденсаторе возникает пробой, также выводящий из строя транзисторы балласта .

При выходе из строя лампы с электронным балластом мерцание, как в случае с электромагнитным балластом, отсутствует, лампа гаснет сразу. Установить причину выхода из строя можно, проверив целостность нитей лампы любым омметром , мультиметром или специализированным прибором для проверки ламп. Если нити лампы имеют низкое сопротивление (порядка 10 Ом, то есть не перегорели), то причина выхода из строя в низком качестве балласта, если одна либо обе из нитей имеют высокое (бесконечное) сопротивление, то лампа перегорела от старости либо от перенапряжения. В последнем случае имеет смысл попробовать заменить саму лампу, однако, если новая лампа также не светится и питание схемы балласта присутствует, то это также говорит о низком качестве балласта (при этом есть риск испортить и новую лампу).

Люминофоры и спектр излучаемого света


Типичный спектр люминесцентной лампы.

Многие люди считают свет, излучаемый люминесцентными лампами, грубым и неприятным. Цвет предметов, освещенных такими лампами, может быть несколько искажён. Отчасти это происходит из-за синих и зелёных линий в спектре излучения газового разряда в парах ртути, отчасти - из-за типа применяемого люминофора, отчасти от неправильно выбранной лампы, предназначенной для складов и нежилых помещений.

Во многих дешевых лампах применяется галофосфатный люминофор, который излучает в основном жёлтый и синий свет, в то время как красного и зелёного излучается меньше. Такая смесь цветов глазу кажется белым, но при отражении от предметов свет может содержать неполный спектр, что воспринимается как искажение цвета. Однако такие лампы, как правило, имеют очень высокую световую отдачу.

Если учесть, что в человеческом глазе три типа цветовых рецепторов, и восприятие сплошного спектра - лишь результат работы мозга, то стремиться воссоздавать сплошной солнечный спектр нет необходимости, достаточно воссоздать такое же воздействие на эти три рецептора. Этот принцип давно используется в цветном телевидении и цветной фотографии. Поэтому в более дорогих лампах используется «трёхполосный» и «пятиполосный» люминофор. Это позволяет добиться более равномерного распределения излучения по видимому спектру, что приводит к более натуральному воспроизведению света. Однако такие лампы, как правило, имеют меньшую световую отдачу.

Колбы специальных ламп изготавливаются из увиолевого стекла, пропускающего лучи в ультрафиолетовом диапазоне волн.

В домашних условиях оценить спектр лампы можно с помощью компакт-диска. Для этого нужно посмотреть на отражение света лампы от рабочей поверхности диска - в дифракционной картине будут видны спектральные линии люминофора. Если лампа расположена близко, между лампой и диском лучше поместить экран с маленьким отверстием.

Специальные люминесцентные лампы

Также существуют специальные люминесцентные лампы с различными спектральными характеристиками:

  • Лампы дневного света, отвечающие самым высоким требованиям к цветопередаче естественного цвета при дневном освещении 5400К, служат для устранения эффекта цветовой мимикрии. Она незаменима в случаях, когда нужна атмосфера живого дневного света, например, в типографиях, картинных галереях, музеях, зубоврачебных кабинетах, и лабораториях, при просмотре диапозитивов и в специализированных магазинах текстильных товаров.
  • Лампы дневного света, которые излучают свет, который по своей спектральной характеристике схож с солнечным светом. Данные лампы рекомендуется для помещений с недостатком дневного света, например для офисов, банков и магазинов. Благодаря своей очень хорошей цветопередаче и высокой температуре цвета (6500К) она идеально подходит для сравнения красок и медицинской светотерапии.
  • Лампы дневного света для растений и аквариумов с усиленным излучением в спектральном диапазоне синего и красного света. Идеально воздействует на фотобиологические процессы. Данные лампы с обозначениями излучают свет с минимальным содержанием ультрафиолетовой составляющей типа А (при абсолютном отсутствии ультрафиолетовых составляющих типа В и С). Обычно комбинируются с лампами дневного света (5400K - 6700K), для придания естественности фонового освещения.
  • Лампы для морских обитателей аквариумов с излучением в диапазоне синего цвета и ультрафиолета . Служат для придания естественной окраски кораллов и обитателей коралловых рифов . Также, данные лампы позволяют некоторым видам кораллов флуоресцировать , что в свою очередь «оживляет» композицию. Обычно комбинируются с лампами дневного света (5400K - 6700K), для придания естественности фонового освещения.
  • Декоративные лампы красного, жёлтого, зелёного, синего и малинового цветов. Цветные люминесцентные лампы особенно пригодны для декоративного освещения и создания специальных световых эффектов. Цвет лампы получают применением специального люминофора или окрашиванием колбы.Помимо прочего, люминесцентная лампа жёлтого цвета не содержит в своем спектре ультрафиолетовую составляющую. Поэтому эта лампа рекомендована для стерильных производств, например, для цехов по изготовлению микросхем (в подобном производстве используют фоторезисты - вещества, реагирующие с УФ), а также для общего освещения без УФ-излучения.
  • Люминесцентные лампы, предназначенные для освещения помещений, в которых содержатся птицы . Спектр этих ламп содержит ближний ультрафиолет , что позволяет создать более комфортное для них освещение, приблизив его к естественному, так как птицы, в отличие от людей, имеют четырёхкомпонентное зрение.

Светильники из ламп «чёрного» света

  • Лампы со специальными цветовыми характеристиками:
    • лаков , красок на глубину не более 1 мм; лечение гипербилирубинемии .
    • для полимеризации пластмасс, клеев, лаков , красок на глубину более 1 мм; лечение псориаза ; привлечения насекомых в инсектоловушки; для распознавания подделок.

Варианты исполнения

Люминесцентные лампы - газоразрядные лампы низкого давления - разделяются на линейные и компактные.

Линейные лампы

Линейная люминесцентная лампа - ртутная лампа низкого давления прямой, кольцевой или U-образной формы, в которой большая часть света излучается люминесцентным покрытием, возбуждаемым ультрафиолетовым излучением разряда. Часто такие лампы совершенно неправильно называют - колбчатыми или трубчатыми, такое определение является устаревшим, хотя не противоречит ГОСТ 6825-91 , в котором принято обозначение «трубчатые».

Двухцокольная прямолинейная люминесцентная лампа представляет собой стеклянную трубку, по концам которой вварены стеклянные ножки с укрепленными на них электродами (спиральными нитями подогрева). На внутреннюю поверхность трубки наносится тонкий слой кристаллического порошка - люминофора. Трубка заполнена инертным газом или смесью инертных газов (Ar, Ne, Kr) и герметически запаяна. Внутрь вводится дозированное количество ртути, которая при работе лампы переходит в парообразное состояние. На концах лампы имеются цоколи с контактными штырьками для подключения лампы в цепь.

Линейные лампы различаются по.

Сегодня освещение является существенной деталью внутреннего оформления дома или квартиры. Поэтому очень важно, чтобы выбранный осветительный прибор давал необходимый уровень освещения в комнате. Но помимо этого необходимо учитывать тот возможный вред для здоровья, который выбранный источник света может наносить в процессе своей эксплуатации.
Во многих домах на данный момент времени в качестве источника дневного света активно используются люминесцентные лампочки.

Люминесцентная лампа

В этой статье мы коснемся вопроса касательно того, насколько серьезен вред люминесцентных ламп для организма человека.

Один из лидеров освещения

Люминесцентные лампочки в современных квартирах и домах сегодня очень активно используются для создания основного или дополнительного освещения. Это связано с тем, что подобные источники дневного света обладают следующими преимуществами:

  • значительная экономия электроэнергии;

Обратите внимание! Экономия электроэнергии при использовании люминесцентных ламп составляет примерно 80%.

Лампочка в действии

  • качество и долговечность. Срок службы таких источников света составляет в 10-12 раз больше чем обычной лампы накаливания. Таким образом, польза очевидна — раз купив такую лампочку, вы забудете о необходимости покупки новой примерно на десять лет;
  • достаточно высокие параметры испускаемого света.

Как видим, наличие таких достоинств в эксплуатации люминесцентных ламп позволяет им быть среди наиболее распространенных источников света. Реальная польза от их использования будет заметна практически сразу.

Явные минусы

Несмотря на тот факт, что люминесцентные светильники имеют хороший набор достоинств, использование в домашних условиях таких источников дневного света имеет и массу недостатков. При этом многие из них могут привести к ухудшению здоровья человека.
Здесь отдельно стоит оговорить то, что стоимость таких лампочек достаточно высока. Это минус стоит на следующем месте после того вреда, который способен наносить организму человека подобная продукция.
К негативным моментам эксплуатации люминесцентных ламп можно отнести:


Дерматит

  • наличие ультрафиолетового излучения. С такими лампочками людям с различными заболеваниями кожи следует быть очень аккуратными. В противном случае возможно появление дерматитов, экземы, пигментации, псориаза и т.д. В критических случаях даже может начаться рак кожи. Но чтобы получить настолько негативные последствия, источником света необходимо пользоваться очень длительное время;
  • побочные аспекты работы – мерцание или стробоскопический эффект. Это еще один значительный минус в работе люминесцентных ламп, которые влияет непосредственно на зрительную систему. Скорость мигания такой лампочки может достигать 50 раз за секунду. Подобное мерцание очень болезненно воспринимается глазами. Они начинают слезиться, снижается острота зрения и повышается общая утомляемость глаз. Также мерцание может приводить к искажению зрительного восприятия объектов;

Обратите внимание! Мерцание можно исправить с помощью установки 2-х и более изделий в светильник. Это позволит уменьшить визуальный дискомфорт и снизить вред, получаемый глазами.

  • отсутствие инерционности. В результате этого такие лампочки зажигаются с небольшой задержкой. Это также может наносить зрительный дискомфорт. В данной ситуации мышцы глаз пытаются подстраивать хрусталик под меняющийся критерий свет/темнота и не всегда могут справиться с этим эффективно.

Обратите внимание! Все вышеперечисленные негативные моменты не поможет нивелировать даже соблюдение всех правил эксплуатации изделия. Это позволит только минимизировать вред, но полностью исключить его все равно не получится.
Особенно опасна работа таких лампочек для маленьких детей, чья зрительная система находится на стадии развития. Через год нахождения под таким источником света у детей диагностируется снижение остроты зрения и даже могут понадобиться очки.

Что еще нужно знать

Отдельно стоит отметить, что в состав люминесцентных источников света входит, хоть и в небольших количествах, ртуть. Среднее содержание ртути в одной лампочке составляет примерно 3-5 г. Она нужна для того, чтобы предотвращать накаливание колбы и передавать возбуждение по лампе.


Структура лампочки

Присутствие ртути делает такой осветительный прибор очень опасным в случае, когда лампа была разбита. Ведь, как известно, ртуть накапливается в организме человека и не выводится из него. Впоследствии она способна стимулировать появление не только определенных нарушений здоровья, но и развитие хронических заболеваний.
Особенно негативно данная ситуация сказывается на детском организме. Если на взрослом человеке попадание ртути вовнутрь организма скажется не так сильно, то у ребенка проявления ухудшения здоровья начнутся сразу же.
В случае повреждения колбы изделия обязательно необходимо провести процедуру демеркулизации (очисти помещения от ртути).
Кроме этого, из-за нахождения в составе осветительного прибора ртути, значительно усложняется его утилизация. Такие лампочки нельзя просто взять и выкинуть в мусор. Для их утилизации существуют специальные пункты приема.

Не такой свет

В негативном влиянии на здоровье человека люминесцентных ламп не последнюю роль играет линейный спектр свечения. Наши глаза привыкли в процессе эволюции к непрерывному спектру солнца. Этот спектр успешно копируется обычной лампочкой накаливания. А вот у люминесцентных изделий отсутствует часть спектра, что естественно отрицательным образом сказывается на зрительной системе человека.


Спектр свечения

От такого освещения глаза будут намного быстрее уставать, появится слезливость. При длительном и постоянном нахождении под таким источником света однозначно происходит снижение остроты зрения.
Помимо этого свечение люминесцентных ламп имеет еще одни негативный эффект – искажение действительности. Под таким освещением движущиеся предметы могут казаться неподвижными. Это прежде всего касается небольших объектов: сверла, вентилятор и т.д.
Такая ситуация чревата многочисленными травмами, особенно если в доме проживают маленькие дети.
Еще одним моментом, свидетельствующим в пользу вреда подобного источника света, является создание лампой электромагнитного излучения. Примерный диапазон его работы охватывает метровый радиус. Поэтому данный тип лампочек не стоит использовать вблизи своего любимого места пребывания в комнате. Иначе у вас появится головная боль, расстройство пищеварения, нарушение сна и другие проявления недомогания.
У людей, часто подвергавшихся воздействию света люминесцентных ламп, диагностируется снижение уровня мелатонина. А это уже может привести к нарушению биологических ритмов организма и сбоям в работе практически всех внутренних органов.
Как видим, люминесцентные лампы имеют внушительный набор негативных особенностей своей работы, которые приводят к нарушению работы многих систем в организме человека. Если для мест общественного назначения, где человек не пребывает постоянно, такие лампы подходят, то для квартиры или дома это будет не самым хорошим решением. Никакое количество достоинств этих приборов не может компенсировать наносимый человеку вред!



Секреты выбора светодиодных ламп для дома

Светодиодная лента – что нужно знать при выборе